

Industrieroboter

Technisches Handbuch

RV-1A/RV-2AJ

	Technisches Handbuch Roboter RV-1A/RV-2AJ Artikel-Nr.: 142354 B				
	Version		Änderungen / Ergänzungen / Korrekturen		
А	01/2002	pdp			
AB	01/2002	pdp pdp-cr	Abs. 4.1.2: Korrektur der Außenabmessungen Korrektur der Handsteuerkabelbelegung		

Zu diesem Handbuch

Die in diesem Handbuch vorliegenden Texte, Abbildungen, Diagramme und Beispiele dienen ausschließlich der Erläuterung zur Installation, Bedienung und zum Betrieb der in diesem Handbuch beschriebenen Industrieroboter.

Sollten sich Fragen bezüglich Installation und Betrieb der in diesem Handbuch beschriebenen Geräte ergeben, zögern Sie nicht, Ihr zuständiges Verkaufsbüro oder einen Ihrer Vertriebspartner (siehe Umschlagseite) zu kontaktieren. Aktuelle Informationen sowie Antworten auf häufig gestellte Fragen erhalten Sie über das Internet: http://www.mitsubishi-automation.de.

Die MITSUBISHI ELECTRIC EUROPE B.V. behält sich vor, jederzeit technische Änderungen dieses Handbuchs ohne besondere Hinweise vorzunehmen.

© 01/2002

Sicherheitshinweise

Zielgruppe

Dieses Handbuch richtet sich ausschließlich an anerkannt ausgebildete Elektrofachkräfte, die mit den Sicherheitsstandards der Automatisierungstechnik vertraut sind. Projektierung, Installation, Inbetriebnahme, Wartung und Prüfung der Roboter nebst Zubehör dürfen nur von einer anerkannt ausgebildeten Elektrofachkraft, die mit den Sicherheitsstandards der Automatisierungstechnik vertraut ist, durchgeführt werden. Eingriffe in die Hard- und Software unserer Produkte, soweit sie nicht in diesem Handbuch beschrieben sind, dürfen nur durch unser Fachpersonal vorgenommen werden.

Bestimmungsgemäßer Gebrauch

Die Industrieroboter-Serien RV-2AJ und RV-1A sind nur für die Einsatzbereiche vorgesehen, die in diesem Handbuch beschrieben sind. Achten Sie auf die Einhaltung aller im Handbuch angegebenen Kenndaten. Die Produkte wurden unter Beachtung der Sicherheitsnormen entwickelt, gefertigt, geprüft und dokumentiert. Bei Beachtung der für Projektierung, Montage und ordnungsgemäßen Betrieb beschriebenen Handhabungsvorschriften und Sicherheitsanweisungen gehen vom Produkt im Normalfall keine Gefahren für Personen oder Sachen aus. Unqualifizierte Eingriffe in die Hard- oder Software bzw. Nichtbeachtung der in diesem Handbuch angegebenen oder am Produkt angebrachten Warnhinweise können zu schweren Personen- oder Sachschäden führen. Es dürfen nur von MITSUBISHI ELECTRIC empfohlene Zusatz- bzw. Erweiterungsgeräte in Verbindung mit den Robotersystemen RV-2AJ und RV-1A benutzt werden.

Jede andere darüber hinausgehende Verwendung oder Benutzung gilt als nicht bestimmungsgemäß.

Sicherheitsrelevante Vorschriften

Bei der Projektierung, Installation, Inbetriebnahme, Wartung und Prüfung der Geräte müssen die für den spezifischen Einsatzfall gültigen Sicherheits- und Unfallverhütungsvorschriften beachtet werden.

ACHTUNG:

Im Lieferumfang des Roboters ist ein Sicherheitstechnisches Handbuch enthalten. Dieses Handbuch behandelt alle sicherheitsrelevanten Details zu Aufstellung, Inbetriebnahme und Wartung. Vor einer Aufstellung, Inbetriebnahme oder der Durchführung anderer Arbeiten mit oder am Roboter ist dieses Handbuch unbedingt durchzuarbeiten. Alle darin aufgeführten Angaben sind zwingend zu beachten! Sollte dieses Handbuch nicht im Lieferumfang enthalten sein, wenden Sie sich bitte umgehend an Ihren Mitsubishi-Vertriebspartner.

Darüber hinaus müssen folgende Vorschriften (ohne Anspruch auf Vollständigkeit) beachtet werden:

- VDE-Vorschriften
 - VDE 0100 Bestimmungen f
 ür das Errichten von Starkstromanlagen mit einer Nennspannung bis 1000V
 - VDE 0105
 Betrieb von Starkstromanlagen
 - VDE 0113
 Elektrische Anlagen mit elektronischen Betriebsmitteln
 - VDE 0160 Ausrüstung von Starkstromanlagen und elektrischen Betriebsmitteln
 - VDE 0550/0551 Bestimmungen f
 ür Transformatoren
 - VDE 0700 Sicherheit elektrischer Geräte für den Hausgebrauch und ähnliche Zwecke
 - VDE 0860
 Sicherheitsbestimmungen f
 ür netzbetriebene elektronische Ger
 äte und deren Zubeh
 ör f
 ür den Hausgebrauch und
 ähnliche Zwecke
- Brandverhütungsvorschriften
- Unfallverhütungsvorschriften
 - VBG Nr.4 Elektrische Anlagen und Betriebsmittel

Erläuterung zu den Gefahrenhinweisen

In diesem Handbuch befinden sich Hinweise, die wichtig für den sachgerechten sicheren Umgang mit dem Roboter sind.

Die einzelnen Hinweise haben folgende Bedeutung:

GEFAHR:

Bedeutet, dass eine Gefahr für das Leben und die Gesundheit des Anwenders besteht, z. B. durch elektrische Spannung, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

ACHTUNG:

Bedeutet eine Warnung vor möglichen Beschädigungen des Roboters, seiner Peripherie oder anderen Sachwerten, wenn die entsprechenden Vorsichtsmaßnahmen nicht getroffen werden.

Allgemeine Gefahrenhinweise und Sicherheitsvorkehrungen

Die folgenden Gefahrenhinweise sind als generelle Richtlinie für den Umgang mit dem Robotersystem zu verstehen. Diese Hinweise müssen Sie bei der Projektierung, Installation und dem Betrieb des Robotersystems unbedingt beachten.

GEFAHR:

- Die im spezifischen Einsatzfall geltenden Sicherheits- und Unfallverhütungsvorschriften sind zu beachten. Der Einbau, die Verdrahtung und das Öffnen der Baugruppen, Bauteile und Geräte müssen im spannungslosen Zustand erfolgen.
- Überprüfen Sie spannungsführende Kabel und Leitungen, mit denen die Geräte verbunden sind, regelmäßig auf Isolationsfehler oder Bruchstellen. Bei Feststellung eines Fehlers in der Verkabelung müssen Sie die Geräte und die Verkabelung sofort spannungslos schalten und die defekte Verkabelung ersetzen.
- Überprüfen Sie vor der Inbetriebnahme, ob der zulässige Netzspannungsbereich mit der örtlichen Netzspannung übereinstimmt.
- Treffen Sie die erforderlichen Vorkehrungen, um nach Spannungseinbrüchen und -ausfällen ein unterbrochenes Programm ordnungsgemäß wieder aufnehmen zu können. Dabei dürfen auch kurzzeitig keine gefährlichen Betriebszustände auftreten. Gegebenenfalls ist ein "NOT-AUS" zu erzwingen.
- NOT-AUS-Einrichtungen gemäß EN 60204/IEC 204 VDE 0113 müssen bei jeder Anwendung wirksam bleiben. Ein Entriegeln der NOT-AUS-Einrichtung darf keine un kontrollierten Bewegungen des Roboterarms zur Folge haben.

Allgemeine Sicherheitshinweise bei der Handhabung

Ausführliche Informationen über Sicherheit und Schutz entnehmen Sie bitte dem sicherheitstechnischen Handbuch.

Inhaltsverzeichnis

Systemübersicht

1

1.1	Lieferur	nfang	1-1
	1.1.1	Optionen und Ersatzteile	1-2
	1.1.2	Grundausstattung der Robotersysteme	1-4
1.2	System	konfiguration	1-5
	1.2.1	Roboterarm	1-6
	1.2.2	Steuergerät	1-9
	1.2.3	Teaching Box	1-11

2 Installation

2.1	Auspack 2.1.1 2.1.2	xen des Robotersystems.2-1Roboterarm auspacken.2-1Steuergerät auspacken.2-2
2.2	Handhal 2.2.1 2.2.2 2.2.3 2.2.4	bung des Roboterarms2-3Roboterarm transportieren2-3Roboterarm aufstellen2-5Erdung des Robotersystems2-6Roboterarm verpacken2-8
2.3	Handha 2.3.1 2.3.2	bung des Steuergerätes
2.4	Anschlu	ss der Verbindungskabel
2.5	Netzans 2.5.1 2.5.2	chluss
2.6	Werkzeu 2.6.1 2.6.2 2.6.3 2.6.4 2.6.5	ugbestückung2-14Installation des motorbetriebenen Greifhandsatzes2-14Installation des pneumatisch betriebenen Greifhandsatzes2-15Installation des Magnetventilsatzes2-18Verkabelung und Schlauchführung zur Greifhand2-20Installation der Schnittstellenkarte für die verwendete Greifhand2-24
2.7	Installati 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5	on des Sonderzubehörs2-26Anschluss der Teaching Box2-26Installation einer parallelen Ein-/Ausgangsschnittstelle2-28Installation des Erweiterungsmoduls für zusätzliche Schnittstellenkarten2-30Installation zusätzlicher Schnittstellenkarten2-31Installation des Anschlusskabels für einen Personalcomputer2-33

3	Inbetri	ebnahme
3.1	Abgleic 3.1.1 3.1.2	h des Robotersystems
3.2	Einstell 3.2.1 3.2.2 3.2.3 3.2.4	en der Grundposition (Nullpunkt)
4	Ansch	uss und Referenzdaten
4.1	Der Ro 4.1.1 4.1.2 4.1.3	boterarm
4.2	Das Ste 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6	euergerät4-6Bezeichnung der Komponenten4-6Gehäuseabmessung4-8Externe Ein-/Ausgänge4-9Spezielle Ein-/Ausgänge4-11Programmsteuerung durch externe Signale4-16Parallele Ein-/Ausgangsschnittstelle (Standard)4-20
4.3	Anschlu 4.3.1 4.3.2 4.3.3 4.3.4	uss an einen PC4-25RS232C-Schnittstelle4-25Einstellung der RS232C-Schnittstelle4-26Zeitverhalten der Signalleitung4-27Anschluss an ein PC-System4-29

4.4	Optione	n und Zubehör
	4.4.1	Übersicht
	4.4.2	Motorbetriebener Greifhandsatz 4-31
	4.4.3	Pneumatisch betriebener Greifhandsatz 4-33
	4.4.4	Handflanschadapter
	4.4.5	Magnetventilsatz
	4.4.6	Anschlusskabel für Handsteuersignale (Magnetventilanschluss)
	4.4.7	Anschlusskabel für Handsensorsignale 4-40
	4.4.8	Spiralschlauch für Greifhand
	4.4.9	Leistungs- und Steuerkabel 4-43
	4.4.10	Teaching Box
	4.4.11	Erweiterungsmodul für das Steuergerät 4-46
	4.4.12	Steuermodul für die pneumatisch betriebene Greifhand
	4.4.13	Parallele Schnittstellen für Ein-/Ausgänge 4-49
	4.4.14	Anschlusskabel für externe Ein-/Ausgangsmodule
	4.4.15	Anschlusskabel für Personalcomputer
4.5	Sicherh	eitsschaltungen
	4.5.1	Selbstdiagnosefunktion
4.6	Program	nmierbefehle und Parameter
	4.6.1	Übersicht der MELFA-BASIC-IV-Befehle 4-61
	4.6.2	Übersicht der MOVEMASTER-COMMAND-Befehle 4-64
	4.6.3	Übersicht der Parameter

5 Wartung

5.1	5.1 Wartungsintervalle		
	5.1.1	Wartungsplan	
	5.1.2	Inspektionsintervall	
5.2	Inspekti	onen	
	5.2.1	Tägliche Inspektionen 5-2	
	5.2.2	Periodische Inspektionen	
5.3	Inspekti	ons- und Wartungsarbeiten	
	5.3.1	Konstruktion des Roboterarms 5-4	
	5.3.2	Entfernen der Gehäuseabdeckungen 5-6	
	5.3.3	Wartung der Zahnriemen	
	5.3.4	Inspektion, Einstellung und Ersetzen des Antriebszahnriemens für die J2-Achse 5-9	
	5.3.5	Inspektion, Einstellung und Ersetzen des Antriebszahnriemens für die J3-Achse 5-11	
	5.3.6	Inspektion, Einstellung und Ersetzen des Antriebszahnriemens für die J4-Achse 5-13	
	5.3.7	Inspektion, Einstellung und Ersetzen des Antriebszahnriemens für die J5-Achse 5-15	
	5.3.8	Schmierung	
	5.3.9	Austausch der Pufferbatterie	
5.4	Austaus	ch- und Ersatzteile	
	5.4.1	Austausch und Verschleißmaterialien	
	5.4.2	Übersicht der Ersatzteile für die Wartung 5-26	

6 Technische Daten

6.1	Roboter	arm
6.2	Steuerge	erät
6.3	Umgebu	ngsbedingungen für den Betrieb
6.4	Schutza	rten
6.5	Grundla	gen zu den technischen Daten
	6.5.2	IP-Schutzarten
6.6	Standar	dzubehör und Sonderzubehör6-11
	6.6.1	Roboterarm
	6.6.2	Steuergerät

1 Systemübersicht

In diesem Kapitel werden alle zu den MELFA-Industrierobotern RV-2AJ und RV-1A gehörenden Geräte, Optionen und Systemteile beschrieben.

1.1 Lieferumfang

5- und 6-achsige Roboter

Zu den 5-achsigen Robotern zählt der RV-2AJ. Der RV-1A ist ein 6-achsiger Roboter.

Abb. 1-1: Lieferumfang der Robotersysteme RV-1A und RV-2AJ

1.1.1 Optionen und Ersatzteile

Bezeichnung	Тур	Merkmal	Beschreibung	Option
Motorbetriebener Greifhandsatz	4A-HM01		Der Greifhandsatz beinhaltet einen motorbetriebenen Handgreifer (1A-HM01), einen Spiralkabel (1A-GHCD), eine Schnitt- stellenkarte (2A-RZ364), einen Handflanschadapter (1A-HA01) und Befestigungsschrauben.	٠
Pneumatisch betriebener Greifhandsatz	4A-HP01E	positive Logik	Der Greifhandsatz beinhaltet einen pneumatisch betriebenen Handgreifer (1A-HP01), einen Spiralschlauch (1A-ST0402C), eine Schnittstellenkarte (2A-RZ375), einen Handflanschadapter (1A-HA01) und Befestigungsschrauben.	•
Magnetventilsatz	1E-VD01E	1facher Ventilsatz (positive Logik)	Magnetventilsatz für pneumatisch betriebene Greifhand	•
	1E-VD02E	2facher Ventilsatz (positive Logik)	Die Befestigungsschrauben sind im Lieferumfang enthalten.	•
Handsteuerkabel	1E-GR35S	1faches oder 2faches Handsteuerkabel	Kabel zum Anschluss eines benutzerdefinierten Magnetventils	•
Handsensorkabel	1A-HC20	Einseitig mit Anschlussstecker	Kabel zum Anschluss einer benutzerdefinierten pneumatisch betriebenen Greifhand	•
Spiralschlauch	1E-ST0402C	Für 1fachen Magnetventilsatz (Ø4 × 2)	Spiralförmiger Luftschlauch für eine pneumatisch betriebene Greifhand	•
	1E-ST0404C	Für 2fachen Magnetventilsatz (Ø4 × 4)		•
Handflansch- adapter	1A-HA01	Die Befestigungs- schrauben sind im Lieferumfang enthalten.	Handflanschadapter für die Montage einer Greifhand am Handflansch	•
Teaching Box	R28TB	Länge des Anschluss- kabels: 7 m	Handsteuergerät mit 3-stufigem Totmannschalter Anschluss an Steuergerät über IP 65-Stecker	٠
Schnittstellenkarte (Steuermodul) für pneumatisch betriebene Greif- hand	2A-RZ375	DO: 8 (positive Logik)	Die Schnittstellenkarte wird in das Steuergerät eingebaut. Sie wird ein- gesetzt, wenn die Handsteuersignale verwendet werden.	٠
Parallele Schnitt- stellen für externe Ein-/Ausgänge	2A-RZ371	DO: 32 (positive Logik) DI: 32 (positive Logik)		•
Anschlusskabel für externe Ein-/Ausgänge	RV-E-E/A	Länge des Anschluss- kabels: 5 m, 15 m		•

 Tab. 1-1:
 Übersicht der Optionen und Ersatzteile für Wartungszwecke (1)

Bezeichnung	Тур	Merkmal	Beschreibung	Option
Anschlusskabel	RV-CAB2	25/25 Pin	Kabel zum Anschluss des Steuer-	•
für PC	RV-CAB4	25/9 Pin	gerätes an einen PC	•
Software	COSIROP	CD-ROM	WIN-Bedienoberfläche für die Programmierung, Online-Bedienung, Parametereinstellung und Diagnose der Roboter	•
	COSIMIR	CD-ROM	3D-Simulationsprogramm für die Roboter Es beinhaltet die COSIROP- Funktionalität und erlaubt die Planung von Roboteranwendungen.	•
Erweiterungs- modul	CR1-EB3		Für die Installation von zusätzlichen Schnittstellenkarten	•
Externe serielle Schnittstellen	2A-RZ581	Zwei RS232C- Schnittstellen oder eine RS232C- und eine RS422-Schnittstelle		•
CC-Link- Schnittstellenkarte	2A-HR575E	Nur für lokale Station	Für MELSEC-SPS mit CC-Link-Schnittstelle, CC-Link-Netzwerke	•
ETHERNET- Schnittstellenkarte	2A-HR533E	10BASE-T/5		•
Schnittstellenkarte für Zusatzachsen	2A-RZ541E		Mit dieser Schnittstellenkarte können weitere Servoverstärker (max. 8) an- gesteuert werden.	•

Tab. 1-1: Übersicht der Optionen und Ersatzteile für Wartungszwecke (2)

1.1.2 Grundausstattung der Robotersysteme

Bezeichnung	Тур	Anzahl	Bemerkung	
Roboterarm	RV-2AJ, RV-1A	1		
Steuergerät	CR1	1		
Erdschlussschalter		1		
Anschlusskabelsatz für Steuergerät (Länge 5 m)		1	Leistungs- und Steuerkabel zwischen Roboterarm und Steuergerät	
Bedienungs- und Programmieranleitung		1		
Technisches Handbuch		1	Vorliegendes Handbuch	
Sicherheitstechnisches Handbuch		1		
Garantiekarte		1 Kopie		
Installationsschrauben	M8 × 30	4		
Federringe für die Installationsschrauben	Für M8	4		
Unterlegscheiben für die Installationsschrauben	Für M8	4		
Kabelbefestigung		1	Für den Transport der	
Installationsschrauben für Kabelbefestigung	M5 × 10	4	Roboterarme	
Kunststoffklammern		3	Für die Verdrahtung und	
Installationsschrauben für Kunststoffklammern	M3 × 22	1 pro Klammer	Schlauchtuhrung einer op- tionalen Greifhand	
Unterlegscheiben für Installationsschrauben der Kunststoffklammern	Für M3	1 pro Klammer		
Transportsicherung		1		
Befestigungsschrauben der Transportsicherung	M4 × 12	3		

Tab. 1-2: Grundausstattung der Robotersysteme

HINWEIS

Die Grundausstattung der Robotersysteme beinhaltet keine Netzanschlussleitung und kein Erdungskabel.

1.2 Systemkonfiguration

Abb. 1-2: Konfiguration der Robotersysteme

Die Abb. 1-2 zeigt die Grundkonfiguration eines 5- sowie 6-achsigen Roboterarms. Nähere Informationen über den Anschluss an einen PC und die Programmierung entnehmen Sie bitte dem Abs. 4.3.

HINWEIS Die Teaching Box ist optional erhältlich. Sie ist für den Grundbetrieb der Roboter notwendig.

1.2.1 Roboterarm

5-achsiger Roboterarm

Abb. 1-3: Komponenten eines 5-achsigen Roboterarms

Achsenbezeichnung	Bedeutung
J1-Achse	Mittelteilachse
J2-Achse	Schulterachse
J3-Achse	Ellbogenachse
J5-Achse	Handgelenkneigungsachse
J6-Achse	Handgelenkdrehachse

Tab. 1-3: Übersicht der Achsenbezeichnungen beim 5-achsigen Roboterarm

6-achsiger Roboterarm

Abb. 1-4: Komponenten eines 6-achsigen Roboterarms

Achsenbezeichnung	Bedeutung
J1-Achse	Mittelteilachse
J2-Achse	Schulterachse
J3-Achse	Ellbogenachse
J4-Achse	Unterarmdrehachse
J5-Achse	Handgelenkneigungsachse
J6-Achse	Handgelenkdrehachse

Tab. 1-4:

Übersicht der Achsenbezeichnungen beim 6-achsigen Roboterarm

Lage der Servomotoren

Abb. 1-5: Lage der Servomotoren eines 6-achsigen Roboterarms

HINWEIS Ein 5-achsiger Roboterarm besitzt keinen J4-Motor.

1.2.2 Steuergerät

Die folgende Abbildung zeigt die Vorderansicht des Steuergerätes CR1:

Abb. 1-6: Vorderansicht des Steuergerätes

Nr.	Bezeichnung	Funktion
0	[POWER]-Schalter	Ein-/Ausschalten der Versorgungsspannung
0	[START]-Taste	Starten eines Programms und Betrieb des Roboterarms Das Programm wird kontinuierlich abgearbeitet.
8	[STOP]-Taste	Stoppen des Roboterarms Die Servoversorgungsspannung wird nicht abgeschaltet.
4	[RESET]-Taste	Quittiert einen Fehlercode Setzt den Haltezustand des Programms und das Programm zurück
6	[EMG.STOP]-Schalter	Der Rastschalter dient dem NOT-HALT des Robotersystems. Nach Betätigung des Schalters wird die Servoversorgungsspan- nung unmittelbar abgeschaltet und der sich bewegende Roboter- arm hält sofort an. Durch Rechtsdrehung wird der Schalter entrie- gelt und springt wieder heraus.
6	[REMOVE T/B]-Schalter	Betätigen Sie den Schalter, wenn Sie die Teaching Box bei einge- schalteter Versorgungsspannung des Steuergerätes anschließen bzw. den Anschluss lösen möchten.
0	[CHANG.DISP]-Taste	Anzeigenwechsel auf dem Display des Steuergerätes in der Reihenfolge: Übersteuerung \rightarrow Programmnummer \rightarrow Zeilennummer
8	[END]-Taste	Stoppen des laufenden Programms in der letzten Zeile oder bei der END-Anweisung
9	[SVO.ON]-Taste	Einschalten der Servoversorgungsspannung
0	[SVO.OFF]-Taste	Ausschalten der Servoversorgungsspannung
0	Status.Number-Anzeige	Anzeige von Alarm-, Programmnummer, Übersteuerungswert (%) usw.

 Tab. 1-5:
 Übersicht der Bedien-/Signalelemente des Steuergerätes (1)

Nr.	Bezeichnung		Funktion
12	T/B-Anschluss		Schnittstelle für den Anschluss der Teaching Box
ß	RS232C-Schnittstelle		Schnittstelle für den Anschluss eines PCs
	[MODE]-Umschalter	AUTO (Op.)	Ein Betrieb ist nur über das Steuergerät möglich. Der Betrieb über externe Signale oder die Teaching Box ist deaktiviert.
4		TEACH	Bei aktivierter Teaching Box ist ausschließlich ein Betrieb über die Teaching Box möglich. Der Betrieb über externe Signale oder das Steuergerät ist nicht möglich.
		AUTO (Ext.)	Ein Betrieb ist nur über externe Signale möglich. Der Betrieb über die Teaching Box oder das Steuergerät ist deaktiviert.
6	[UP/DOWN]-Taste		Scrollt die Anzeige

Tab. 1-5: Übersicht der Bedien-/Signalelemente des Steuergerätes (2)

HINWEIS Die Taster 2, 3, 4, 3, 9 und 10 haben integrierte Kontrollanzeigen.

1.2.3 Teaching Box

Abb. 1-7: Ansichten der Teaching Box

Nr.	Bezeichnung	Funktion
0	[EMG.STOP]-Schalter	NOT-HALT-Schalter mit Verriegelungsfunktion Wenn Sie den Schalter betätigen, hält der Roboterarm sofort an. Die Servoversorgungsspannung wird abgeschaltet. Durch Drehen des Schalters im Uhrzeigersinn wird der Schalter wieder entriegelt.
0	[ENABLE/DISABLE]-Schalter	Freigabe der Steuerung über die Teaching Box Bringen Sie den Schalter in die Stellung "ENABLE", um den Roboterarm über die Teaching Box anzusteuern. Wenn die Teaching Box aktiv ist, kann weder über das Bedienfeld des Steuergerätes noch extern in die Steuerung des Roboterarms eingegriffen werden.
3	LCD-Anzeige	Die LCD-Anzeige verfügt über 4 Zeilen zu 16 Zeichen. Hier wird der Programm- oder Roboterarmzustand angezeigt.
	[TOOL]-Taste	Auswahl des Werkzeug-Jog-Betriebs
4	[JOINT]-Taste	Auswahl des Gelenk-Jog-Betrieb
	[XYZ]-Taste	Auswahl des XYZ-Jog- oder Kreis-Jog-Betriebs
6	[MENU]-Taste	Rücksprung ins Hauptmenü
6	[STOP]-Taste	Unterbrechung des laufenden Programms und Abbremsen des Roboters Die Funktion entspricht der der [STOP]-Taste auf dem Bedienfeld des Steuergerätes. Die Tastenfunktion ist, unabhängig von der Stellung des [ENABLE/DISABLE]-Schalters, immer verfügbar.
0	[STEP/MOVE]-Taste	Ausführen des Jog-Betriebs in Verbindung mit den Jog-Tasten (2) Anweisungsschritte werden in Verbindung mit der [INP/EXE]-Taste ausge- führt. Die Servoversorgungsspannung wird abgeschaltet.
8	[+/FORWD]-Taste	Ausführen von Vorwärtsschritten in Verbindung mit der [INP/EXE]-Taste Die nächste Programmzeile im Editiermodus wird angezeigt. Betätigen Sie die Taste in Verbindung mit der [STEP/MOVE]-Taste, erhöht sich die Über- steuerung.
9	[-/BACKWD]-Taste	Ausführen von Rückwärtsschritten in Verbindung mit der [INP/EXE]-Taste Die nächste Programmzeile im Editiermodus wird angezeigt. Betätigen Sie die Taste in Verbindung mit der [STEP/MOVE]-Taste, nimmt die Über- steuerung ab.
0	[COND]-Taste	Editierung des Programms
0	[ERROR RESET]-Taste	Quittierung eines Fehlercodes In Verbindung mit der [INP/EXE]-Taste wird ein Programm zurückgesetzt.
0	12 Tasten für Jog-Betrieb: [-X/(J1)] [+C/(J6)]	Funktionstaste für Jog-Betrieb Im Gelenk-Jog-Betrieb können alle Gelenke einzeln bewegt werden. Im XYZ-Jog-Betrieb kann der Roboterarm an jeder der Koordinatenachsen entlang bewegt werden. Mit den Tasten erfolgt auch die Eingabe von Menüauswahlnummern oder Schrittnummern.
₿	[ADD/1]-Taster	Eingabe von Positionen oder Cursor nach oben bewegen
4	[RPL/↓]-Taste	Änderung von Positionen oder Cursor nach unten bewegen
6	[DEL/←]-Taste	Löschen von Positionen oder Cursor nach links bewegen
6	[HAND/→]-Taste	In Verbindung mit den Tasten [+C/(J6)] oder [-C/(J6)] Bewegung der ersten Greifhand In Verbindung mit den Tasten [+B/(J5)] oder [-B/(J5)] Bewegung der zweiten Greifhand Bewegung des Cursors nach rechts
Ø	[INP/EXE]	Dateneingabe oder Schrittweiterschaltung
₿	[POS/CHAR]-Taste	Wechselt z. B. beim Editieren von Positionsdaten zwischen Zahlen und Buchstaben
Ø	Totmannschalter	Der Totmannschalter muss für das Einschalten des Servoantriebs bei ein- geschalteter Teaching Box betätigt sein.
20	Kontrasteinstellung	Helligkeitseinstellung der LCD-Anzeige

Tab. 1-6: Übersicht der Bedienelemente der Teaching Box

HINWEIS

In der Bedienungs-/Programmieranleitung werden alle Tastenfunktionen detaillierter beschrieben.

2 Installation

In diesem und im folgenden Kapitel werden alle für den erfolgreichen Einsatz der Robotersysteme RV-2AJ und RV-1A notwendigen Vorbereitungen vom Auspacken bis zur Einstellung der Grundposition beschrieben.

2.1 Auspacken des Robotersystems

2.1.1 Roboterarm auspacken

Der Roboterarm ist in einem Karton verpackt. Die folgende Abbildung zeigt schrittweise das Auspacken des Roboterarms. In Abs. 2.2 ist die Handhabung des Roboterarms beschrieben.

- ① Legen Sie den Karton des Roboterarms seitlich, wie in **①** gezeigt, auf den Boden.
- ② Öffnen Sie das Verpackungsband mit einem Messer o. Ä.
- ③ Ziehen Sie die innere Verpackung horizontal aus dem Karton.
- ④ Entfernen Sie den oberen Teil ② der inneren Verpackung .
- ⑤ Richten Sie den Roboterarm zusammen mit dem unteren Teil ③ der inneren Verpackung auf.
- 6 Entfernen Sie den unteren Teil der inneren Verpackung.
- ⑦ Transportieren Sie den Roboterarm wie in Abs. 2.2.1 beschrieben zum Aufstellungsort.

HINWEIS Bewahren Sie die Verpackung für einen späteren Transport auf.

Abb. 2-1: Auspacken des Roboterarms

2.1.2 Steuergerät auspacken

Das Steuergerät ist in einem Karton verpackt. Die folgende Abbildung zeigt schrittweise das Auspacken des Steuergerätes. In Abs. 2.3 ist die Handhabung des Steuergerätes beschrieben.

- ① Öffnen Sie den Karton wie in **①** gezeigt.
- ② Entnehmen Sie die Bedienungs- und Programmieranleitung.
- ③ Entfernen Sie Teil A der inneren Verpackung. Dort finden Sie das Zubehör.
- ④ Heben Sie Teil B der inneren Verpackung aus dem Karton.
- (5) Um die Verpackung zu entfernen, müssen Sie das Steuergerät anheben.
- 6 Stellen Sie das Steuergerät ab.

ACHTUNG:

Fassen Sie zum Anheben die Vorder- und Rückseite an! Tragen Sie das Steuergerät nicht an den Schaltern oder Steckverbindungen!

HINWEIS

Bewahren Sie die Verpackung für einen späteren Transport auf.

Abb. 2-2: Auspacken des Steuergerätes

2.2 Handhabung des Roboterarms

2.2.1 Roboterarm transportieren

ACHTUNG:

Transportieren Sie den Roboterarm immer mit zwei Personen. Die Transportsicherung darf vor einem Transport nicht entfernt werden.

ACHTUNG:

Tragen Sie den Roboterarm immer an den Haltepunkten **()** und **(2)**. Tragen Sie den Roboterarm niemals an den Abdeckungen, da dies zu Beschädigungen führen kann.

 Der Transport muss immer mit zwei Personen erfolgen. Tragen Sie dabei den Roboterarm immer an den Punkten 1 des Oberarmbereichs und 2 des Sockelbereichs. Tragen Sie den Roboter niemals an den Seiten oder an den Abdeckungen, da diese sich lösen können und der Roboterarm zerstört wird.

Abb. 2-3: Haltepunkte am Roboterarm

- (2) Tragen Sie den Roboterarm niemals seitlich oder an den Achsen ohne Haltepunkte, da dieses zu Beschädigungen führen kann.
- ③ Verwenden Sie für längere Transportwege einen Rollwagen. Das Tragen an den Haltepunkten sollte nur kurzzeitig erfolgen.
- ④ Belasten Sie keine Abdeckungen.
- (5) Vermeiden Sie Stoßbelastungen beim Transport des Roboterarms.

ACHTUNG:

Entfernen Sie die Transportsicherung erst nach der Installation des Roboterarms.

2.2.2 Roboterarm aufstellen

Die folgende Abbildung zeigt die Aufstellung und Befestigung des Roboterarms. Diese sind für 5- und 6-achsige Roboterarme identisch.

- Die Standfläche des Roboterarms ist maschinell geplant.
 Bei zu großer Unebenheit kann es zu Funktionsstörungen des Roboterarms kommen.
 Befestigen Sie den Roboterarm über die Montagelöcher (Ø9 mm) an den vier äußeren Ecken der Standfläche mit den mitgelieferten Innensechskantschrauben (M8 × 30).
- ② Richten Sie den Roboterarm waagerecht aus.
- (3) Der Mittenrauhwert der Montageoberfläche sollte $R_a = 6.3 \mu m$ betragen. Eine zu raue Oberfläche kann zu Positionsabweichungen des Roboterarms führen.
- ④ Um Positionsabweichungen zu vermeiden, sollten periphere Einrichtungen, auf die der Roboter zugreift, und der Roboterarm auf einer gemeinsamen Montagefläche installiert sein.
- ⑤ Die Standfläche muss so beschaffen sein, dass auch durch die vom Roboter ausgehenden Belastungen und Vibrationen keine Verformungen auftreten können.
- 6 Entfernen Sie erst nach dem Aufstellen des Roboterarms die Transportsicherung im Handbereich.

ACHTUNG:

Die Befestigungsschrauben der Transportsicherung müssen nach dem Transport entfernt werden. Bewahren Sie die Befestigungsschrauben für einen späteren Transport des Roboterarms auf.

Abb. 2-4: Aufstellen des Roboterarms

2.2.3 Erdung des Robotersystems

Allgemeine Hinweise zur Erdung des Robotersystems

In Abb. 2-5 werden die drei Möglichkeiten einer Erdung gezeigt.

- Die separate Erdung ist die beste Lösung.
 - Die Erdung des Roboterarms erfolgt über eine M4-Gewindebohrung (siehe Abb. 2-6) an der Standfläche.
 - Die Erdung des Steuergerätes erfolgt gemeinsam mit dem Anschluss der Netzzuleitung. Für die Erdung des Steuergerätes gehen Sie wie in Abs. 2.5.1 beschrieben vor.
- Wenn möglich, ist die Erdung des Roboterarms von anderen Geräten zu trennen.
- Der Mindestquerschnitt der Erdungskabel muss 2 mm² betragen.
- Im Lieferumfang des Robotersystems sind die Erdungskabel nicht enthalten.
- Die Erdungskabel sollten so kurz wie möglich sein.

Abb. 2-5: Erdung des Robotersystems

Roboterarm erden

- ① Verwenden Sie ein Erdungskabel mit einem Querschnitt von mindestens 2 mm².
- ② Prüfen Sie den Bereich der Erdungsschraube auf Belag oder Rost und entfernen Sie ihn gegebenenfalls mit einer Feile.
- (3) Befestigen Sie das Erdungskabel mit der Erdungsschraube (M4 \times 10) am Erdungsanschluss des Roboterarms (siehe dazu Abb. 2-6).

Abb. 2-6: Erdung des Roboterarms

2.2.4 Roboterarm verpacken

Um den Roboterarm in seinen Originalkarton verpacken zu können, müssen einige Punkte beachtet werden. Die Transportsicherung muss wie bei der Auslieferung am Roboterarm befestigt werden, damit Schäden an den Getrieben vermieden werden.

- ① Wählen Sie über den [MODE]-Drehschalter am Steuergerät die Betriebsart "TEACH".
- (2) Drehen Sie den [ENABLE/DISABLE]-Schalter der Teaching Box auf "ENABLE", nachdem Sie den Totmannschalter in die Arbeitsposition gebracht haben.
- ③ Wählen Sie über die Tasten [STEP/MOVE] und [JOINT] den Gelenk-Jog-Betrieb aus.
- ④ Verfahren Sie jedes Gelenk einzeln. Der Totmannschalter muss in der mittleren Position stehen.
 - Über die Tasten [STEP/MOVE] in Verbindung mit der [–X]- und die [+X]-Taste wird die J1 Achse verfahren.
 - Über die Tasten [STEP/MOVE] in Verbindung mit der [-Y]- und die [+Y]-Taste wird die J2 Achse verfahren.
 - Über die Tasten [STEP/MOVE] in Verbindung mit der [–Z]- und die [+Z]-Taste wird die J3 Achse verfahren.
 - Über die Tasten [STEP/MOVE] in Verbindung mit der [–A]- und die [+A]-Taste wird die J4 Achse verfahren.
 - Über die Tasten [STEP/MOVE] in Verbindung mit der [–B]- und die [+B]-Taste wird die J5 Achse verfahren.
 - Über die Tasten [STEP/MOVE] in Verbindung mit der [–C]- und die [+C]-Taste wird die J6 Achse verfahren.
- ⑤ Für die Verpackungsposition müssen die einzelnen Gelenke in den folgenden Positionen stehen:
 - $J1 = 0^{\circ}$
 - J2 = 30°
 - J3 = 120°
 - J4 = 0° (Dieses Gelenk ist nur bei 6-achsigen Roboterarmen vorhanden.)
 - J5 = 90°
 - $J6 = 0^{\circ}$

Abb. 2-7: Befestigung der Transportsicherung

- 6 Montieren Sie die Transportsicherung.
- ⑦ Schalten Sie das System aus. Der Roboter ist nun verpackungsfertig.
2.3 Handhabung des Steuergerätes

Dieser Abschnitt beschreibt die Handhabung und Aufstellung des Steuergerätes.

2.3.1 Steuergerät transportieren

ACHTUNG:

Fassen Sie zum Anheben die Vorder- und Rückseite an. Tragen Sie das Steuergerät nicht an den Schaltern oder Steckverbindungen.

2.3.2 Steuergerät aufstellen

In der folgenden Abbildung wird das Aufstellen des Steuergerätes gezeigt. Beachten Sie dabei bitte die folgenden Punkte:

- An der Unterseite des Steuergerätes befindet sich ein Ventilator. Achten Sie darauf, dass die Füße des Steuergerätes montiert sind.
- Stellen Sie sicher, dass seitlich ein Freiraum von mindestens 50 mm und an der Rückseite von mindestens 170 mm besteht.

Abb. 2-8: Aufstellen des Steuergerätes

ACHTUNG:

Um ein Überhitzen des Steuergerätes zu vermeiden, müssen die Füße als Abstandshalter auf der Unterseite des Steuergerätes montiert sein.

2.4 Anschluss der Verbindungskabel

Die folgende Abbildung zeigt das Anschließen der Verbindungskabel zwischen Roboterarm und Steuergerät.

- ① Stellen Sie sicher, dass das Steuergerät ausgeschaltet ist. Der [POWER]-Schalter muss in "OFF-Position" stehen.
- ② Schließen Sie die Leistungs- und Steuerkabel an den Roboterarm und das Steuergerät an. Vermeiden Sie starkes Ziehen oder Knicken der Kabel. Dieses könnte die Kabel beschädigen.
- ③ Schrauben Sie die Stecker mit dem Schraubring fest. Ein Klicken signalisiert Ihnen den korrekten Anschluss.

HINWEIS An den Steckern befinden sich Nasen. Daher passt der Stecker nur in eine Richtung in die Anschlussbuchse. Bei falschem Anschluss kann der Stecker beschädigt werden.

Abb. 2-9: Anschluss der Verbindungskabel

ACHTUNG:

Die Standard-Verbindungskabel zwischen Roboterarm und Steuergerät sind nur für eine feste Verlegung geeignet. Ein Einsatz in einer Schleppkette ist zum Beispiel nicht möglich.

2.5 Netzanschluss

2.5.1 Netzanschluss und Erdung anschließen

In diesem Abschnitt wird der Anschluss der Netzzuleitung und der Erdung an das Steuergerät beschrieben. Wie Sie den Roboterarm erden, entnehmen Sie bitte dem Abschnitt 2.2.3.

HINWEIS Das Steuergerät kann nur 1-phasig angeschlossen werden.

GEFAHR:

Führen Sie die Anschlussarbeiten am Steuergerät nur bei ausgeschaltetem und gegen Wiedereinschalten gesichertem Hauptschalter für die Spannungsversorgung durch.

- ① Vergewissern Sie sich, dass die Netzspannung und der Leistungsschalter des Steuergerätes ausgeschaltet sind.
- ② Bereiten Sie die Netzzuleitung und das Erdungskabel vor. Verwenden Sie Kabel mit einem Mindestquerschnitt von 2 mm².
- ③ Lösen Sie die zwei Schrauben der Abdeckung des Klemmenblocks und entfernen die Abdeckung.
- (4) Schließen Sie das Spannungsversorgungskabel entsprechend der Abb. 2-10 an die Klemmen des Klemmenblocks an.

Abb. 2-10: Anschluss der Netzzuleitung und Erdung am Steuergerät

- (5) Die andere Seite des Spannungsversorgungskabels verbinden Sie mit dem Erdschlussschalter.
- (6) An die oberen Klemmen des Erdschlussschalters schließen Sie die Netzzuleitung an.
- ⑦ Verbinden Sie das Erdungskabel mit dem durch PE gekennzeichneten Erdungsanschluss am Klemmenblock.
- (8) Befestigen Sie die Klemmenabdeckung mit den zwei Schrauben.

2.5.2 Anschluss für NOT-HALT

Auf der Rückseite des Steuergerätes befindet sich der NOT-HALT-Stecker. Auf diesem Stecker sind 6 Anschlussklemmen, je zwei um einen externen NOT-HALT-Schalter, einen Tür-Schließkontakt und eine Signallampe in den Schaltkreis des Roboters zu integrieren. Standardmäßig sind die Anschlussklemmen für den NOT-HALT-Schalter und den Tür-Schließkontakt mit jeweils einer Drahtbrücke kurzgeschlossen. Der Roboter kann über den NOT-HALT-Schalter an der Vorderseite des Steuergerätes gestoppt werden.

Um einen externen NOT-HALT-Schalter oder Tür-Schließkontakt in den Roboterschaltkreis zu integrieren, gehen Sie wie folgt vor:

- ① Lösen Sie die Schrauben der entsprechenden Anschlussklemmen und entfernen die Drahtbrücke.
- ② Nehmen Sie die Anschlussleitung des externen Schalters, z. B. NOT-HALT-Schalter, und entfernen Sie 5 bis 7 mm der Leitungsisolierung.
- ③ Legen Sie das abisolierte Leitungsende unter die Schraubenklemme.
- ④ Drehen Sie die Schrauben fest an.

Abb. 2-11: Anschluss des NOT-HALT-Schalters und Tür-Schließkontakt

2.6 Werkzeugbestückung

2.6.1 Installation des motorbetriebenen Greifhandsatzes

Typenbezeichnung: 4A-HM01

- 1 Befestigen Sie den mechanischen Anschlussadapter mit den Innensechskantschrauben (M3 \times 8) am Handflansch des Roboterarms.
- ② Montieren Sie die motorbetriebene Greifhand mit den vier Innensechskantschrauben (M3 × 12) an den Anschlussadapter.
- ③ Verbinden Sie das Handsensorkabel der Greifhand mit dem Anschluss "CON1H" am Unterarm des Roboters.
- ④ Befestigen Sie das Handsensorkabel mit der Kunststoffklemme seitlich des Unterarms, so dass keine Kraft auf die Greifhand ausgeübt wird.
- ④ Überprüfen Sie, ob das Kabel die Bewegung des Handneigungs- und des Unterarmdrehgelenkes nicht blockiert.

Abb. 2-12: Montage und Anschluss der motorbetriebenen Greifhand

HINWEIS

Die motorbetriebene Greifhand hat eine Lebensdauer von 10 Millionen Greifzyklen bei einer Last von 50 % des Maximalwertes (1 Millionen Greifzyklen bei Maximallast).

Detaillierte Informationen zum motorbetriebenen Greifhandsatz entnehmen Sie bitte dem Abs. 4.4.2.

2.6.2 Installation des pneumatisch betriebenen Greifhandsatzes

Typenbezeichnung:

4A-HP01E (positive Logik)

ACHTUNG:

Montieren Sie die Greifhand nur in Nullstellung der Handgelenkdrehachsen und der Handgelenkneigungsachse. Die Nullstellung befindet sich in der Mitte des jeweiligen Bewegungsbereiches. Wiederholen Sie die Installation, wenn der Roboter die Kabel und Schläuche quetscht bzw. die Kabel und Schläuche den Roboterarm blockieren.

- 1 Befestigen Sie den mechanischen Anschlussadapter mit den Innensechskantschrauben (M3 \times 8) am Handflansch des Roboterarms.
- ② Montieren Sie die pneumatisch betriebene Greifhand mit den vier Innensechskantschrauben (M3 × 12) an den Anschlussadapter.
- ③ Schließen Sie die Spiralschläuche der Greifhand an die Anschlüsse 1 und 2 im Unterarmbereich an.
 - Verbinden Sie den Schlauch "OPEN" mit Anschluss 1.
 - Verbinden Sie den Schlauch "CLOSE" mit Anschluss 2.
- ④ Verbinden Sie das Handsensorkabel der Greifhand mit dem Anschluss "CON1H".
- ⑤ Befestigen Sie das Kabel und die Schläuche mit der Kunststoffklemme seitlich des Unterarms, so dass keine Kraft auf die Greifhand ausgeübt wird.
- ⑤ Überprüfen Sie, ob die Kabel die Bewegung des Handneigungs- und Unterarmdrehgelenkes nicht blockieren.

Abb. 2-13: Montage und Anschluss der pneumatisch betriebenen Greifhand

Abb. 2-14: Vorderansicht der installierten Greifhand

Detaillierte Informationen zum pneumatisch betriebenen Greifhandsatz entnehmen Sie bitte dem Abs. 4.4.3.

HINWEISE An den Schlauchenden "OPEN" und "CLOSE" befindet sich je ein Sensor.

Die pneumatisch betriebene Greifhand hat eine Lebensdauer von 10 Millionen Greifzyklen.

Parameter für Werkzeuglänge

HINWEIS

Passen Sie den Parameter für die Werkzeuglänge an. Die Werkzeuglänge der pneumatisch betriebenen Greifhand 1E-HP01E beträgt 107 mm (siehe MEXTL-Parameter in der Programmieranleitung).

Eingangssignale für den Handgreiferzustand

Die Tabelle 2-1 zeigt die Handsensorsignale in Abhängigkeit vom Handgreiferzustand. Die Nummern am Handanschluss entsprechen der Pinbelegung des Unterarmanschlusses.

Anschluss-		Bit-Zusta				
nummer des Handsensors	Eingangssignal	Hand offen	Zwischen- stellung	Hand geschlossen	Bemerkung	
1	Eingang 900	0 (Ein)	1	1	Für Hand 1	
2	Eingang 901	1	1	0 (Ein)		
3	Eingang 902	0 (Ein)	1	1	Für Hand 2	
4	Eingang 903	1	1	0 (Ein)	Fui Hallu 2	

Tab. 2-1: Eingangszustände der Handsensorsignale

Abb. 2-15: Eingangszustände der Greifhandsensoren

Funktionsprüfung

- Prüfen Sie den Handgreiferzustand über die Anzeige der Teaching Box, Menüpunkt: INPUT. Die Bedienung der Teaching Box wird in der Bedienungs- und Programmieranleitung beschrieben.
- ② Ist der angezeigte Handgreiferzustand nicht korrekt, so prüfen Sie die Anschlüsse.

2.6.3 Installation des Magnetventilsatzes

Typenbezeichnu	ng:
----------------	-----

1E-VD01E (positive Logik) 1E-VD02E (positive Logik)

Abb. 2-16: Installation des Magnetventilsatzes

Abb. 2-17: Verbindung der Steueranschlüsse des Magnetventilblocks

- 2 Verwenden Sie die Bohrlöcher im Sockelbereich des Roboters, um den Magnetventilblock zu installieren. Zur Befestigung dienen die (M3 × 25)-Schrauben **1**.
- ③ Schieben Sie den primären Pneumatikschlauch in die Schnellkupplung 2 des Magnetventils (Anschluss P). Damit wird die vom Roboterbasisanschluss kommende Druckluftversorgung eingespeist.
- 4 Verbinden Sie den mit "AIR IN" bezeichneten Schlauch "1" mit dem Anschluss A 4 des ersten Magnetventils 3.
 Verbinden Sie den mit "AIR IN" bezeichneten Schlauch "2" mit dem Anschluss B 5 des ersten Magnetventils 3.
 Für das Doppelventil 1E-VD02E:
 Verbinden Sie den mit "AIR IN" bezeichneten Schlauch "3" mit dem Anschluss A 7 des zweiten Magnetventils 6.
 Verbinden Sie den mit "AIR IN" bezeichneten Schlauch "4" mit dem Anschluss B 8 des zweiten Magnetventils 6.
- (5) Schließen Sie die Steueranschlüsse der Magnetventile gemäß Abb. 2-16 an.

Greifhand	Handanschluss	Nummer der Kupp- lung am Unterarm	Schlauch- markierung	Magnetventilanschluss	
Hand 1	OPEN (AUF)	1	1	А	Erster Satz
	CLOSE (ZU)	2	2	В	
Hand 2	OPEN (AUF)	3	3	А	Zweiter Satz
	CLOSE (ZU)	4	4	В	

Übersicht der Pneumatikverbindungen

Tab. 2-2: Übersicht der Pneumatikverbindungen

HINWEIS Ein Einzelventil kann nur die Hand 1 steuern. Die Steuerung der Hand 2 ist nicht möglich.

2.6.4 Verkabelung und Schlauchführung zur Greifhand

In der folgenen Abbildung ist die Lage und Führung der Kabel und Schlauchleitungen für die Standardgreifhand gezeigt:

Abb. 2-18: Schlauch- und Kabelführung zur Greifhand

Übersicht der innenliegenden Druckluftleitungen (Standardausführung)

- Der Roboter verfügt über vier Polyurethanschlauchleitungen Ø4 × 2,5 vom Sockelbereich bis in Höhe des Unterarms.
- Die Enden der Schlauchleitungen sind mit je vier Anschlussbrücken für Ø4-Schläuche versehen.
- Der Roboter kann im Sockelbereich bis zu zwei Pneumatikventilsätze aufnehmen.
- In Abs. 4.4.5 finden Sie nähere Informationen über die Magnetventilsätze.

HINWEIS Die Pneumatikventilsätze sind nur optional erhältlich.

Greifhandverkabelung für Pneumatikbetrieb

- Das primäre Greifhandausgangskabel ist für den Einsatz der pneumatisch betriebenen Greifhand ausgelegt. Verfügt das Steuergerät über die Schnittstellenkarte für die pneumatisch betriebene Greifhand (2A-RZ375), so arbeitet das primäre Handausgangskabel als Schaltkabel für Pneumatikventile.
- Das Handzuleitungskabel des Roboterarms führt vom PCB-Anschluss im Sockel bis zum Schulterbereich. Die Kabelklemmen verfügen über Anschlussbrücken für 4 Handausgänge. Das Kabelende ist mit 6 Anschlusssteckern versehen, die mit den Ringmarkierungen "GR1" bis "GR4" bezeichnet sind.

Eingangsverkabelung für die Handsensorsignale

Die Eingänge der Handsensorsignale sind vom Sockel direkt mit dem Stecker im Unterarm verbunden.

Die Sensorsignale der pneumatisch betriebenen sowie der motorbetriebenen Greifhand werden über diesen Stecker eingespeist.

HINWEIS

Für die Nutzung der Sensorsignale muss je nach verwendeter Greifhand die Schnittstellenkarte für die pneumatisch betriebene oder die motorbetriebene Greifhand (2A-RZ375/ 2A-RZ364) eingesetzt werden.

Die folgende Abbildung zeigt ein Beispiel eines Kabel- und Schlauchverlegungsplans für die Greifhände und den Magnetventileinbau:

Abb. 2-19: Kabel- und Schlauchverlegungsplan für Greifhände und Magnetventileinbau

HINWEIS Der Sensoranschluss-Stecker ist werksseitig wie dargestellt belegt.

In Abb. 2-20 ist eine Beispielschaltung für die Pneumatikversorgung der Greifhand dargestellt.

Abb. 2-20: Beispielschaltung der Pneumatikversorgung für die Greifhand

HINWEISE

Beim Einsatz eines eigenen Magnetventils muss dieses unmittelbar an der Spule des Ventils mit einer Freilaufdiode ausgestattet sein.

Die Schaltung in Abb. 2-20 verhindert das Auftreten von Problemen an der Greifhand durch sinkenden Pneumatikdruck. Der hier gezeichnete Druckschalter dient der Abschaltung des Roboters bei zu geringem Betriebsdruck.

Die optionale Greifhand und das Magnetventil benötigen für den Betrieb ölfreie Druckluft.

2.6.5 Installation der Schnittstellenkarte für die verwendete Greifhand

Typenbezeichnung:

2A-RZ364 2A-RZ375 (für motorbetriebene Greifhand) (für pneumatisch betriebene Greifhand)

ACHTUNG:

Trennen Sie die Netzzuleitung vom Stromnetz, bevor Sie die Gehäuseabdeckung entfernen! Schließen Sie die Spannungsversorgung erst nach Wiederbefestigung der Abdeckung wieder an das Stromnetz an.

HINWEIS

Nach dem Ausschalten der Versorgungsspannung müssen Sie 3 Minuten warten, bevor Sie die Gehäuseabdeckung entfernen.

 Lösen Sie die Schraube 2 auf der Rückseite des Steuergerätes und entfernen die obere Abdeckung 1.

Abb. 2-21: Installation (1)

R000799C

2 Lösen Sie die vier Schrauben 3 um das Bedienfeld abzunehmen. Achten Sie darauf, starkes Ziehen an den intern verlegten Kabeln zu vermeiden.

Abb. 2-22: Installation (2)

R000800C

③ Lösen Sie die Steckverbindung ④. Dazu müssen Sie die Drahtklammern öffnen.

Abb. 2-23: Installation (3)

R000801C

④ Lösen Sie die drei Installationsschrauben ⑤ der Steuerplatine ⑥ (RZ687) und entnehmen diese.

Abb. 2-24: Installation (4)

(5) Stecken Sie die Schnittstellenkarte auf die Steuerplatine . Verwenden Sie die Anschlüsse CNHNDOUT/CNHND der Steuerplatine. Bei Einsatz der motorbetriebenen Hand montieren Sie die Schnittstellenkarte 2A-RZ364. Möchten Sie die pneumatisch betriebene Greifhand verwenden, müssen Sie die Schnittstellenkarte 2A-RZ375 installieren.

Abb. 2-25: Installation (5)

R000804C

- ⑥ Installieren Sie die Steuerplatine und befestigen Sie diese mit den drei Installationsschrauben.
- ⑦ Befestigen Sie den Stecker A und schließen die Drahtklammern.
- ⑧ Montieren Sie das Bedienfeld. Achten Sie darauf, keine internen Kabel einzuklemmen.
- Montieren Sie die Gehäuseabdeckung
 1.
- 1 Schalten Sie die Versorgungsspannung wieder ein.
- ① Überprüfen Sie die Funktion der installierten Greifhand.

2.7 Installation des Sonderzubehörs

In diesem Abschnitt wird die Installation des Sonderzubehörs beschrieben.

2.7.1 Anschluss der Teaching Box

Typenbezeichnung: R28TB

In diesem Abschnitt wird der Anschluss der Teaching Box bei ein- und ausgeschalteter Versorgungsspannung beschrieben.

In Abb. 2-26 wird der Anschluss der Teaching Box gezeigt. Detaillierte Angaben zum Zubehör finden Sie in Kapitel 4.

ACHTUNG:

Ziehen oder knicken Sie das Verbindungskabel nicht übermäßig! Das Kabel kann sonst beschädigt werden.

Anschluss der Teaching Box bei ausgeschalteter Versorgungsspannung

- ① Schalten Sie das Steuergerät aus.
- ② Verbinden Sie das Kabel der Teaching Box mit dem Teaching-Box-Anschluss des Steuergerätes.
- ③ Befestigen Sie den Stecker durch Rechtsdrehung des Schraubringes. Ein Klicken signalisiert Ihnen den korrekten Anschluss.
- ④ Stellen Sie sicher, dass der [REMOVE T/B]-Tastschalter nicht gedrückt ist. Der [REMOVE T/B]- Tastschalter darf zum Anschließen der Teaching Box nicht gedrückt sein. Das Steuergerät erzeugt einen Signalton, wenn der [REMOVE T/B]-Tastschalter betätigt ist. Betätigen Sie in diesem Fall einmal den Tastschalter.
- (5) Stellen Sie den [ENABLE/DISABLE]-Schalter der Teaching Box in die Position "DISABLE".
- 6 Stellen Sie sicher, dass sich niemand im Bewegungsradius des Roboterarms aufhält. Schalten Sie die Versorgungsspannung wieder ein.

ACHTUNG:

Betätigen Sie den [REMOVE T/B]-Tastschalter, bevor Sie das Kabel der Teaching Box abziehen! Bei nicht betätigtem Tastschalter wird sonst ein NOT-HALT für den Roboterarm ausgelöst!

Wird die Versorgungsspannung des Steuergerätes eingeschaltet, wenn der [ENABLE/ DISABLE]-Schalter der Teaching Box bei nicht betätigtem Totmannschalter in Stellung "ENABLE" ist, schaltet sich die Servo-Versorgungsspannung nicht ein. Stellen Sie die Teaching Box auf "DISABLE" und schalten die Versorgungsspannung des Steuergerätes erneut ein. Sie können auch den Servoantrieb über die eingeschaltete Teaching Box auf "EIN" stellen und damit die Servoversorgungsspannung einschalten, während sie gleichzeitig den Totmannschalter betätigen.

Anschluss der Teaching Box bei eingeschalteter Versorgungsspannung

Der [REMOVE T/B]-Tastschalter ermöglicht bei eingeschalteter Versorgungsspannung des Steuergerätes den Anschluss der Teaching Box. Gehen Sie wie nachstehend beschrieben vor. Bei einer anderen Vorgehensweise wird ein NOT-HALT ausgelöst.

ACHTUNG:

Der NOT-HALT-Schalter der Teaching Box ist wirkungslos, wenn der [REMOVE T/B]-Tastschalter gedrückt ist! Der Roboter kann durch Signale anderer Quellen gestartet werden.

Lösen der Verbindung zwischen Steuergerät und Teaching Box

- ① Stellen Sie den [ENABLE/DISABLE]-Schalter der Teaching Box auf "DISABLE".
- ② Betätigen Sie den [REMOVE T/B]-Tastschalter des Steuergerätes (eingedrückter Zustand). Die LED des Tastschalters beginnt zu blinken.
- ③ Lösen Sie den Stecker der Teaching Box durch Linksdrehung des Schraubringes.
- ④ Ziehen Sie den Stecker der Teaching Box innerhalb der n\u00e4chsten 5 Sekunden aus dem Steuerger\u00e4t. Die LED erlischt.

Anschließen der Teaching Box

- ① Stellen Sie den [ENABLE/DISABLE]-Schalter der Teaching Box auf "DISABLE".
- 2 Verbinden Sie die Teaching Box mit dem Steuergerät. Die LED des Tastschalters beginnt zu blinken.
- ③ Betätigen Sie den [REMOVE T/B]-Tastschalter des Steuergerätes innerhalb der nächsten 5 Sekunden (Schalter steht hervor), nachdem Sie die Teaching Box angeschlossen haben. Die LED leuchtet nun kontinuierlich.
- ④ Befestigen Sie den Stecker der Teaching Box durch Rechtsdrehung des Schraubringes. Ein Klicken signalisiert Ihnen den korrekten Anschluss.

HINWEIS

Wird während der oben genannten Schritte ein NOT-HALT ausgelöst, gehen Sie wie folgt vor:

Betätigen Sie den [REMOVE T/B]-Tastschalter des Steuergerätes (Schalter steht hervor). Die LED leuchtet kontinuierlich. Stellen Sie den [ENABLE/DISABLE]-Schalter der Teaching Box auf "ENABLE". Betätigen Sie die [ERROR RESET]-Taste der Teaching Box.

Abb. 2-26: Anschluss der Teaching Box

2.7.2 Installation einer parallelen Ein-/Ausgangsschnittstelle

Typenpezeichnung: 2A-RZ371 (positive Logik)

Es können insgesamt bis zu 8 parallele Ein-/Ausgangsschnittstellen an das Steuergerät angeschlossen werden. Standardmäßig verfügt das Steuergerät über eine interne parallele Ein-/Ausgangsschnittstellenkarte. Extern können noch 7 weitere Schnittstellen an die Steuerplatine RZ865 (Servo Control CPU) angeschlossen werden. Innerhalb des Steuergerätes erfolgt der Anschluss über ein abgeschirmtes Netzwerkkabel (NETcable-1).

Für den Ein-/Ausgangsschaltkreis wird eine separate 24-V-DC-Spannungsversorgung benötigt. Der Anschluss erfolgt über ein DCcable-2-Anschlusskabel.

HINWEIS

Bei der letzten Schnittstelle muss ein 150- Ω -Abschlusswiderstand (Terminator) angeschlossen werden. Die maximale Länge des Netzwerkkabels NETcable-1 zwischen Steuerung und Abschlusswiderstand beträgt 50 m.

In der folgenden Abbildung ist die Installation einer zusätzlichen parallelen Ein-/Ausgangsschnittstelle 2A-RV371 dargestellt. Detaillierte Angaben zum Zubehör finden Sie in Kapitel 4.

Abb. 2-27: Installation der Ein-/Ausgangsschnittstelle

Abb. 2-28: Anschluss der Ein-/Ausgangsschnittstelle

2.7.3 Installation des Erweiterungsmoduls für zusätzliche Schnittstellenkarten

Typenbezeichnung: CR1-EB3

- ① Lösen Sie die vier Schrauben ① und entfernen Sie die seitliche Abdeckung ② des Steuergerätes.
- Öffnen Sie die Erweiterungsbox, indem Sie die vier Schrauben 3 lösen und die Abdeckung
 entfernen.
- ③ Verbinden Sie die Anschlüsse des Steuergerätes und des Erweiterungsmoduls. Zur besseren Montage befinden sich an dem Erweiterungsmodul zwei Führungsstifte.
- ④ Befestigen Sie das Erweiterungsmodul mit den vier Schrauben 1.
- (5) Montieren Sie die Abdeckung des Erweiterungsmoduls.

Abb. 2-29: Installation des Erweiterungsmoduls CR1-EB3

2.7.4 Installation zusätzlicher Schnittstellenkarten

Typenbezeichnung:	
-------------------	--

2A-RZ581-E(serielle Schnittstellenkarte)2A-HR575-E(CC-Link-Schnittstellenkarte)2A-HR533-E(ETHERNET-Schnittstellenkarte)2A-RZ541-E(Schnittstellen für Zusatzachsen)

Die zusätzlichen Schnittstellenkarten werden in dem Erweiterungsmodul CR1-EB3 montiert. Dazu gehen Sie wie folgt vor:

ACHTUNG:

Trennen Sie die Netzzuleitung vom Stromnetz, bevor Sie die Gehäuseabdeckung entfernen! Schließen Sie die Spannungsversorgung erst nach Wiederbefestigung der Abdeckung wieder an das Stromnetz an.

Abb. 2-30: Installation zusätzlicher Schnittstellenkarten

- ① Schalten Sie den Netzschalter des Steuergerätes aus. Trennen Sie die Netzzuleitung vom Stromnetz.
- ② Öffnen Sie das Erweiterungsmodul, indem Sie die Schrauben 1 lösen und die Abdeckung entfernen.
- ③ Stecken Sie die zusätzlichen Schnittstellenkarten in den entsprechenden Steckplatz.

HINWEIS

Die Steckplatzbelegung ist von der verwendeten Schnittstellenkarte abhängig. Detaillierte Informationen entnehmen Sie bitte den Bedienungsanleitungen der entsprechenden Schnittstellenkarten.

- ④ Befestigen Sie die Schnittstellenkarten mit den Montageplatten 2 und den Schrauben 3.
- (5) Montieren Sie die Abdeckung des Erweiterungsmoduls Abb. 2-30:
- 6 Achten Sie darauf, das keine Kabel eingeklemmt werden.

2.7.5 Installation des Anschlusskabels für einen Personalcomputer

Typenbezeichnung: RV-CAB2 RV-CAB4

Die folgende Abbildung zeigt den Anschluss eines Personalcomputers über das Rechneranschlusskabel.

- ① Prüfen Sie die Kompatibilität zwischen Personalcomputer und Anschlusskabel.
- ② Verbinden Sie das Anschlusskabel mit dem seriellen RS232C-Anschluss des Steuergerätes. Vermeiden Sie starkes Ziehen oder Knicken des Kabels. Es könnte sonst beschädigt werden.

HINWEIS Befestigen Sie den Stecker mit den Schrauben.

Abb. 2-31: Anschluss des Rechneranschlusskabels

3 Inbetriebnahme

3.1 Abgleich des Robotersystems

3.1.1 Arbeitsablauf

In diesem Abschnitt erhalten Sie schrittweise Anleitungen, wie Sie die Versorgungsspannung und die Teaching Box einschalten.

Anschließend wird das Einstellen und Speichern der Grundposition beschrieben.

ACHTUNG:

Das Einstellen der Grundposition ist für eine einwandfreie Funktion des Roboters notwendig und muss nach dem Auspacken oder einer Neukonfiguration (Roboterarm oder Steuergerät) durchgeführt werden.

In der folgenden Tabelle sind drei Methoden für die Einstellung der Grundposition aufgeführt. Die Methode "Einstellung über Dateneingabe" ist die meist verwendete Einstellungsmethode für die Grundposition.

Nr.	Methode	Bemerkung	Referenz
1	Einstellung über Dateneingabe	Es werden die Herstellerdaten über die Teaching Box eingegeben.	Siehe Abs. 3.2.1
2	Einstellung über mechanische Endanschläge	Die Grundposition wird eingestellt, indem für jede Achse die mechanische Endposition definiert wird.	Siehe Abs. 3.2.2
3	Einstellung eines benutzer- definierten Nullpunktes	Eine vom Anwender beliebig gewählte Position wird als Grundposition definiert.	Siehe Abs. 3.2.3

 Tab. 3-1:
 Methoden zum Einstellen der Grundposition (Nullposition)

3.1.2 Vorbereitung des Systems für den Wartungsbetrieb

Schritt 1: Versorgungsspannung einschalten

- Vergewissern Sie sich, dass sich niemand im Bewegungsbereich des Roboterarms aufhält.
- 2 Bringen Sie den [POWER]-Schalter an der Seite des Steuergerätes in die Position "ON".
- ③ Die Kontroll-LEDs des Steuergerätes blinken einen Moment. Auf der STATUS NUMBER-Anzeige erscheint die Anzeige "o.100".

Abb. 3-1: Einschalten der Versorgungsspannung

Abb. 3-2: [MODE]-Schalter am Steuergerät auf "TEACH" stellen

② Drehen Sie den [ENABLE/DISABLE]-Schalter in die Position "ENABLE".

③ Auf dem Display der Teaching Box erscheint das Hauptmenü.

Abb. 3-3: Teaching Box einschalten

ACHTUNG:

Um die alleinige Kontrolle über das Robotersystem zu erlangen, sollten Sie den [ENABLE/DISABLE]-Schalter der Teaching Box in die Position "ENABLE" stellen. In diesem Zustand sind die Steuerfunktionen am Steuergerät inaktiviert. Aus Sicherheitsgründen sind alle NOT-HALT-Schalter und STOPP-Schalter des Systems immer aktiv.

HINWEIS

Um aus einem Untermenü wieder in das Hauptmenü der Teaching Box zu wechseln, müssen Sie die [MENU]-Taste betätigen. Ebenso können Sie den [ENABLE/DISABLE]-Schalter erst in die "DISABLE"-Position und dann in die "ENABLE"-Position stellen.

3.2 Einstellen der Grundposition (Nullpunkt)

3.2.1 Einstellung über Dateneingabe

Diese Methode wird nach Auslieferung des Roboters zur Einstellung der Grundposition verwendet. Die Daten der vom Hersteller vorgegebenen Grundposition befinden sich auf einem Aufkleber an der Innenseite der Batteriefachabdeckung und auf dem Beipackzettel im Karton des Roboterarms.

Detaillierte Angaben zum Batteriefach und dem Batteriewechsel finden Sie in Abs. 5.3.9.

ACHTUNG:

Schalten Sie die Versorgungsspannung des Steuergerätes ab, bevor Sie die Abdeckung des Batteriefaches entfernen.

ACHTUNG:

Die Daten für die Grundeinstellung des Nullpunktes befinden sich in der Spalte "Default" des Aufklebers. Sollte eine Neueinstellung der Grundposition des Roboterarms mit einer anderen Methode vorgenommen worden sein (z. B. beim Auswechseln eines Motors), gelten die zuletzt eingetragenen Daten.

Date	Default				
D	V!#S29				1
J1	06DTYY				1
J2	2?HL9X				
J3	1CP55V				1
J4	T6!M\$Y				1
J5	Z2IJ%Z0				1
J6	A12%Z0				Einstellmethode E: mit Kalibriervorrichtung
/lethod	E	$E\cdotN\cdotSP$	$E\cdotN\cdotSP$	E·N·SP	N: keine Funktion

Abb. 3-4: Aufkleber mit den Daten der Grundposition (Beispieldaten)

HINWEIS

Beim 5-achsigen Roboterarm ist die J4-Achse nicht vorhanden. Sie ist auf dem Aufkleber nicht aufgeführt.

Führen Sie eingangs die Schritte entsprechend den Anweisungen aus Abs. 3.1.2 aus. Anschließend wählen Sie das Menü "Einstellung über Dateneingabe". Gehen Sie dabei wie folgt vor:

Schritt 1: Auswahl der Einstellmethode

Nr.	Display-Darstellung	Tastenbetätigungen	Beschreibung
1	<menu> 1.TEACH 2.RUN 3.FILE 4.MONI 5.MAINT 6.SET</menu>	(J6) 5 STU	Das Menü "MAINTENANCE" wird ausgewählt.
2	<maint> 1.PARAM 2.INIT 3.BRAKE 4.ORIGIN 5.POWER</maint>	(J2) 4 MNO	Das Menü "ORIGIN" wird ausgewählt.
3	<origin> 1.DATA 2.MECH 3.TOOL 4.ABS 5.USER</origin>	- B (J5) 1 DEF	Die Einstellmethode "1.DATA" wird ausge- wählt.
4	<origin> SERVO OFF OK?(1) 1:EXECUTE</origin>		Die Versorgungsspan- nung der Servoantrie- be wird ausgeschaltet.

Tab. 3-2: Auswahl der Methode "Einstellung über Dateneingabe"

Schritt 2: Eingabe der Grundpositionsdaten

Nachdem die Versorgungsspannung der Servoantriebe abgeschaltet ist, wird das Menü zur Eingabe der Grundpositionsdaten angezeigt.

Abb. 3-5: Zuordnung der Daten auf dem Display

In Tab. 3-3 finden Sie ein Beispiel, wie Sie die vom Hersteller angegebenen Daten eingeben (siehe auch Abb. 3-5).

HINWEISE

Den Cursor auf dem Display der Teaching Box können Sie über die Tasten [ADD \uparrow], [RPL \downarrow], [DEL \leftarrow] und [HAND \rightarrow] bewegen. Die Eingabe von Zeichen erfolgt bei gleichzeitiger Betätigung der [POS/CHAR]-Taste und der Taste für das Zeichen. Bei mehrmaliger Betätigung der Zeichentaste wird jeweils das nächste Zeichen aufgerufen. Die Eingabe von Ziffern erfolgt über die Zifferntasten. Fehlerhafte Eingaben können Sie mit der [DEL \leftarrow]-Taste löschen.

Bei fehlerhaft eingegebenen Grundpositionsdaten wird der Alarm Nr. 1760 angezeigt. Betätigen Sie die Taste [ERROR RESET] und geben Sie die Daten für die Grundposition erneut ein.

Nr.	Display-Darstellung	Tastenbetätigungen	Beschreibung	
1	<data> D(V00000) 1:000000 000000 3:000000 000000 5:000000 000000</data>	POS CHAR	Das Zeichen "V" wird eingegeben.	
2	<pre><data> D(V 0000) 1:000000 000000 3:000000 000000 5:000000 000000</data></pre>	POS CHAR 3 X #%1	Das Zeichen "!" wird eingegeben.	
3	<pre><data> D(V!#000) 1:000000 000000 3:000000 000000 5:000000 000000</data></pre>	POS CHAR (#%)	Das Zeichen "#" wird eingegeben.	
4	<pre><data> D(V!#\$00) 1:000000 000000 3:000000 000000 5:000000 000000</data></pre>	POS CHAR C (J6) 5 STU	Das Zeichen "S" wird eingegeben.	
5	<pre><data> D(V!#S20) 1:000000 000000 3:000000 000000 5:000000 000000</data></pre>	- A (J4) 2 GHI	Die Ziffer "2" wird ein- gegeben.	
6	<pre><data> D(V!#S29) 1:000000 000000 3:000000 000000 5:000000 000000</data></pre>	(J2) 9 &↔	Die Ziffer "9" wird ein- gegeben.	
0	<pre><data> D(V!#S29) 1:000000 000000 3:000000 000000 5:000000 000000</data></pre>	RPL ↓	Der Cursor wird zur Dateneingabe für das J1-Gelenk bewegt.	
8	Die Eingabe der Daten für J1 bis J6 erfolgt in der oben beschriebenen Weise.			
9	<data> D(V!#S29) 1:06DTYY 2?HL9X 3:1CP55V T6!M\$Y 5:Z2IJ%Z A12%Z0</data>	INP EXE	Nach Eingabe aller Daten wird der Bestä- tigungsbildschirm auf- gerufen.	
10	<pre><origin> CHANGES TO ORIGIN</origin></pre>		Die Einstellung der Grundposition wird ausgeführt.	

Tab. 3-3: Einstellung der Grundposition über Dateneingabe

3.2.2 Einstellung über die mechanischen Endanschläge

Schritt 1: Auswahl der Einstellmethode

In diesem Abschnitt wird die Einstellung der Grundposition über die mechanischen Endanschläge beschrieben.

Führen Sie eingangs die Schritte entsprechend den Anweisungen in Abs. 3.1.2 aus. Anschlie-Bend wählen Sie das Menü "Einstellung über die Endanschläge". Gehen Sie wie folgt vor:

HINWEIS

Fahren Sie das J4-Gelenk im Jog-Betrieb mit Hilfe der Teaching Box in den oberen Endanschlag.

Nr.	Display-Darstellung	Tastenbetätigung	Beschreibung	
1	<menu> 1.TEACH 2.RUN 3.FILE 4.MONI 5.MAINT 6.SET</menu>	(J6) 5 STU	Das Menü "MAINTENANCE" wird ausgewählt.	
2	<maint> 1.PARAM 2.INIT 3.BRAKE 4.ORIGIN 5.POWER</maint>	(J2) 4 MNO	Das Untermenü "ORIGIN" wird ausge- wählt.	
3	<origin> 1.DATA 2.MECH 3.TOOL 4.ABS 5.USER</origin>	— A (J4) 2 GHJ	Die Einstellmethode "2.MECH" wird ausge- wählt.	
4	<mech> SERVO OFF OK? (1) 1:EXECUTE</mech>	(J5) 1 DEF	Die Versorgungsspan- nung der Servoantrie- be wird ausgeschaltet.	
5	Nachdem die Versorgungsspannung der Servoantriebe abgeschaltet ist, wird das Menü zur Einstellung der Grundposition und zum Lösen der Bremsen angezeigt.			

Tab. 3-4: Auswahl der Einstellmethode über die Endanschläge

HINWEIS Mit dieser Methode können Sie alle Achsen des Roboterarms einzeln einstellen.

Abb. 3-6: Menü zum Lösen der Bremsen beim 5-achsigen Roboterarm

Abb. 3-7: Menü zum Lösen der Bremsen beim 6-achsigen Roboterarm

Schritt 2: Einstellung der Grundposition für die J1-Achse (in "–"-Richtung)

ACHTUNG:

Bei dieser Einstellmethode werden die Bremsen gelöst. Stellen Sie sicher, dass eine zweite Person den Roboterarm unterstützt, bevor Sie die Bremsen lösen. So kann ein unkontrolliertes Fallen in den Endanschlag verhindert werden. Stellen Sie weiterhin sicher, dass für die zweite Person keine Verletzungsgefahr beim Unterstützen des Roboterarms durch Quetschungen der Hände und Finger besteht.

Die folgende Tabelle zeigt das schrittweise Vorgehen bei der Einstellung der Grundposition des Mittelteilgelenks (J1-Achse):

Nr.	Display-Darstellung	Tastenbetätigung	Beschreibung
1	<mech> 12345678 BRAKE (10000000) AXIS (00000000) ORIGIN: NOT DEF</mech>	(J5) 1 DEF	Die J1-Achse wird ausgewählt. Achten Sie darauf, dass alle anderen Achsen auf "0" gesetzt sind.
2		Totmannschalter	Die Bremse des J1-Gelenks wird gelöst. Bewegen Sie das Gelenk mit zwei Händen in die "–"-Richtung, bis der Endanschlag erreicht ist.
3	<mech> 12345678 BRAKE (10000000) AXIS (00000000) ORIGIN: NOT DEF</mech>	RPL ↓	Der Cursor bewegt sich eine Zeile nach unten.
4	<mech> 12345678 BRAKE (1000000) AXIS (10000000) ORIGIN: NOT DEF</mech>		Die J1-Achse wird ausgewählt. Achten Sie darauf, dass alle anderen Achsen auf "0" gesetzt sind.
5	<mech> SET ORIGIN OK? (1) 1:EXECUTE</mech>		Die Grundposition der J1-Achse wird gesetzt.
6	<mech> 12345678 BRAKE (1000000) AXIS (1000000) ORIGIN: COMPLETED</mech>		Die Einstellung der Grundposition für die J1-Achse ist beendet.

Tab. 3-5: Einstellung der Grundposition (J1-Achse)

Abb. 3-8: Festlegung der Grundposition für die Mittelteilachse

HINWEISE

Die Bremsen ziehen sofort wieder an, wenn Sie die [+X]-Taste oder den Totmannschalter loslassen, während die Bremsen gelöst sind.

Sie können den Cursor mit den Tasten [ADD \uparrow], [RPL \downarrow], [DEL \leftarrow] und [HAND \rightarrow] innerhalb des Displays bewegen.

Bei der Auswahl der Achse darf nur die gewünschte Achse auf "1" gesetzt sein. Alle anderen Achsen müssen den Wert "0" besitzen.

Schritt 2: Einstellung der Grundposition für die J2-Achsen (in "–"-Richtung)

Die Einstellung der Grundposition für die J2-Achse ist identisch zur Einstellung der Grundposition für die J1-Achse. Daher erfolgt hier nur eine kurze Beschreibung. Beachten Sie auch die Anweisungen aus Tab. 3-5.

- ① Wählen Sie unter dem Menüpunkt "BRAKE" die J2-Achse aus. Der zweite Eintrag muss auf "1" gesetzt sein.
- 2 Lösen Sie die Bremse der J2-Achse, indem Sie die Tasten [MOVE] und [+X] gemeinsam mit dem Totmannschalter betätigen.
- ③ Bewegen Sie das Gelenk mit zwei Händen in die "–"-Richtung, bis der Endanschlag erreicht ist.
- ④ Drücken Sie die [RPL]-Taste. Der Cursor befindet sich bei der ersten Ziffer des Menüpunktes "AXIS".
- (5) Wählen Sie die J2-Achse aus. Der zweite Eintrag muss auf "1" gesetzt sein. Bestätigen Sie die Eingabe mit der [INP]-Taste.
- 6 Den Bestätigungsbildschirm quittieren Sie mit dem Wert "1" und der [INP]-Taste.
- ⑦ Vermerken Sie die Grundposition auf dem Aufkleber auf der Batteriefachabdeckung.

HINWEISEDie Bremsen ziehen sofort wieder an, wenn Sie die [+X]-Taste oder den Totmannschalter
loslassen, während die Bremsen gelöst sind.

Sie können den Cursor mit den Tasten [ADD \uparrow], [RPL \downarrow], [DEL \leftarrow] und [HAND \rightarrow] innerhalb des Displays bewegen.

Bei der Auswahl der Achse darf nur die gewünschte Achse auf "1" gesetzt sein. Alle anderen Achsen müssen den Wert "0" besitzen.

Schritt 2: Einstellung der Grundposition für die J3-Achsen (in "+"-Richtung)

Die Einstellung der Grundposition für die J3-Achse ist identisch zur Einstellung der Grundposition für die J1-Achse. Daher erfolgt hier nur eine kurze Beschreibung. Beachten Sie auch die Anweisungen aus Tab. 3-5.

- Wählen Sie unter dem Menüpunkt "BRAKE" die J3-Achse aus. Der dritte Eintrag muss auf "1" gesetzt sein.
- 2 Lösen Sie die Bremse der J3-Achse, indem Sie die Tasten [MOVE] und [+X] gemeinsam mit dem Totmannschalter betätigen.
- ③ Bewegen Sie das Gelenk mit zwei Händen in die "+"-Richtung, bis der Endanschlag erreicht ist.
- ④ Drücken Sie die [RPL]-Taste. Der Cursor befindet sich bei der ersten Ziffer des Menüpunktes "AXIS".
- ⑤ Wählen Sie die J3-Achse aus. Der dritte Eintrag muss auf "1" gesetzt sein. Bestätigen Sie die Eingabe mit der [INP]-Taste.
- 6 Den Bestätigungsbildschirm quittieren Sie mit dem Wert "1" und der [INP]-Taste.
- ⑦ Vermerken Sie die Grundposition auf dem Aufkleber auf der Batteriefachabdeckung.

HINWEISE Die Bremsen ziehen sofort wieder an, wenn Sie die [+X]-Taste oder den Totmannschalter loslassen, während die Bremsen gelöst sind.

Sie können den Cursor mit den Tasten [ADD \uparrow], [RPL \downarrow], [DEL \leftarrow] und [HAND \rightarrow] innerhalb des Displays bewegen.

Bei der Auswahl der Achse darf nur die gewünschte Achse auf "1" gesetzt sein. Alle anderen Achsen müssen den Wert "0" besitzen.

Abb. 3-9: Einstellung der Grundposition für Schulter- und Ellenbogengelenk

Schritt 2: Einstellung der Grundposition für die J4-Achsen (in "+"-Richtung)

Die Einstellung der Grundposition für die J4-Achse ist identisch zur Einstellung der Grundposition für die J1-Achse. Daher erfolgt hier nur eine kurze Beschreibung. Beachten Sie auch die Anweisungen aus Tab. 3-5.

ACHTUNG:

Um die Grundposition in "+"-Richtung der J4-Achse einzustellen, verfahren Sie die J3-Achse in eine Position, in der sich der Unterarm frei drehen lässt. Damit verhindern Sie Beschädigungen am Roboterarm. Bei einem 5-achsigen Roboterarm ist die J4-Achse nicht vorhanden.

Abb. 3-10: Voreinstellung für die Einstellung der Grundposition der Unterarmdrehachse

- Wählen Sie unter dem Menüpunkt "BRAKE" die J4-Achse aus. Der vierte Eintrag muss auf "1" gesetzt sein.
- 2 Lösen Sie die Bremse der J4-Achse, indem Sie die Tasten [MOVE] und [+X] gemeinsam mit dem Totmannschalter betätigen.
- ③ Bewegen Sie das Gelenk mit zwei Händen in die "+"-Richtung, bis der Endanschlag erreicht ist.
- ④ Drücken Sie die [RPL]-Taste. Der Cursor befindet sich bei der ersten Ziffer des Menüpunktes "AXIS".
- ⑤ Wählen Sie die J4-Achse aus. Der vierte Eintrag muss auf "1" gesetzt sein. Bestätigen Sie die Eingabe mit der [INP]-Taste.
- 6 Den Bestätigungsbildschirm quittieren Sie mit dem Wert "1" und der [INP]-Taste.
- ⑦ Vermerken Sie die Grundposition auf dem Aufkleber auf der Batteriefachabdeckung.

HINWEISE Die Bremsen ziehen sofort wieder an, wenn Sie die [+X]-Taste oder den Totmannschalter loslassen, während die Bremsen gelöst sind.

Sie können den Cursor mit den Tasten [ADD \uparrow], [RPL \downarrow], [DEL \leftarrow] und [HAND \rightarrow] innerhalb des Displays bewegen.

Bei der Auswahl der Achse darf nur die gewünschte Achse auf "1" gesetzt sein. Alle anderen Achsen müssen den Wert "0" besitzen.

Abb. 3-11: Einstellung der Grundposition für die Unterarmdrehachse

Schritt 2: Einstellung der Grundposition für die J5-Achsen (in "–"-Richtung)

Die Einstellung der Grundposition für die J5-Achse ist identisch zur Einstellung der Grundposition für die J1-Achse. Daher erfolgt hier nur eine kurze Beschreibung. Beachten Sie auch die Anweisungen aus Tab. 3-5.

- Wählen Sie unter dem Menüpunkt "BRAKE" die J5-Achse aus. Der fünfte Eintrag muss auf "1" gesetzt sein.
- 2 Lösen Sie die Bremse der J5-Achse, indem Sie die Tasten [MOVE] und [+X] gemeinsam mit dem Totmannschalter betätigen.
- ③ Bewegen Sie das Gelenk mit zwei Händen in die "–"-Richtung, bis der Endanschlag erreicht ist.
- ④ Drücken Sie die [RPL]-Taste. Der Cursor befindet sich bei der ersten Ziffer des Menüpunktes "AXIS".
- ⑤ Wählen Sie die J5-Achse aus. Der fünfte Eintrag muss auf "1" gesetzt sein. Bestätigen Sie die Eingabe mit der [INP]-Taste.
- 6 Den Bestätigungsbildschirm quittieren Sie mit dem Wert "1" und der [INP]-Taste.
- ⑦ Vermerken Sie die Grundposition auf dem Aufkleber auf der Batteriefachabdeckung.

HINWEIS Die Bremsen ziehen sofort wieder an, wenn Sie die [+X]-Taste oder den Totmannschalter loslassen, während die Bremsen gelöst sind.

Sie können den Cursor mit den Tasten [ADD \uparrow], [RPL \downarrow], [DEL \leftarrow] und [HAND \rightarrow] innerhalb des Displays bewegen.

Bei der Auswahl der Achse darf nur die gewünschte Achse auf "1" gesetzt sein. Alle anderen Achsen müssen den Wert "0" besitzen.

Abb. 3-12: Einstellung der Grundposition für die Handgelenkneigung

Schritt 2: Einstellung der Grundposition für die J6-Achse (in "–"-Richtung)

ACHTUNG:

Die Handgelenkdrehachse besitzt keinen mechanischen Endanschlag. Bei der Definition der Grundposition achten Sie darauf, die Handgelenkdrehachse nur im Bewegungsbereich ($\pm 200^{\circ}$) zu verdrehen.

Montieren Sie zwei M5-Schrauben auf dem Handflansch. Zur Definition der Grundposition gehen Sie wie folgt vor:

Nr.	Display-Darstellung	Tastenbetätigung	Beschreibung
1	<mech> 12345678 BRAKE (00000000) AXIS (00000000) ORIGIN: NOT DEF</mech>	(J5) 1 DEF	Die J6-Achse wird ausgewählt. Achten Sie darauf, dass alle anderen Achsen auf "0" gesetzt sind.
2		Totmannschalter	Die Bremse des J6- Gelenks wird gelöst. Bewegen Sie das Ge- lenk. Der Markierungs- pfeil der Hand muss auf die Pfeilspitze des Pfeils zeigen, der sich auf dem Handadapter befindet.
3	<mech> 12345678 BRAKE (00000100) AXIS (00000000) ORIGIN: NOT DEF</mech>	RPL ↓	Der Cursor bewegt sich eine Zeile nach unten.
4	<mech> 12345678 BRAKE (00000100) AXIS (00000000) ORIGIN: NOT DEF</mech>		Die J6-Achse wird ausgewählt. Achten Sie darauf, dass alle anderen Achsen auf "0" gesetzt sind.
5	<mech> SET ORIGIN OK? (1) 1:EXECUTE</mech>		Die Grundposition der J6-Achse wird gesetzt.
6	<mech> 12345678 BRAKE (00000100) AXIS (00000100) ORIGIN: COMPLETED</mech>		Die Einstellung der Grundposition für die J6-Achse ist beendet.

 Tab. 3-6:
 Einstellung der Grundposition (J6-Achse)

Abb. 3-13: Einstellung der Grundposition für die Handgelenkdrehachse

HINWEISE

Die Bremsen ziehen sofort wieder an, wenn Sie die [+X]-Taste oder den Totmannschalter loslassen, während die Bremsen gelöst sind.

Sie können den Cursor mit den Tasten [ADD \uparrow], [RPL \downarrow], [DEL \leftarrow] und [HAND \rightarrow] innerhalb des Displays bewegen.

Bei der Auswahl der Achse darf nur die gewünschte Achse auf "1" gesetzt sein. Alle anderen Achsen müssen den Wert "0" besitzen.

Schritt 3: Einstellung der Grundposition für alle Achsen

- ① Stellen Sie die Grundposition für die Handgelenkneigungsachse wie auf Seite 3-16 beschrieben ein.
- ② Stellen Sie den Winkel der Handgelenkneigungsachse im Gelenk-Jog-Betrieb auf 0° ein, um ein Anstoßen des Handgelenks an den Roboterarm zu vermeiden.

Abb. 3-14: Voreinstellung der Handgelenkachse

- ③ Bei einem 6-achsigen Roboterarm führen Sie die Einstellung der Grundposition der J4-Achse wie auf Seite 3-14 in den Punkten ① bis ③ beschrieben durch. Achten Sie darauf, dass die Ellbogenachse die Bewegung der Unterarmdrehachse nicht stört. Die Punkte ④ bis ⑦ werden gleichzeitig für alle Achsen durchgeführt und können hier wegfallen.
- HINWEISBei 5-achsigen Roboterarmen ist die J4-Achse nicht vorhanden. Fahren Sie bitte mit Punkt
(4) fort.
 - ④ Führen Sie folgende Schritte durch:
 - Punkt (1) bis (2) aus "Einstellung der Gundposition für die J1-Achse" (siehe Seite 3-10)
 - Punkt (1) bis (3) aus "Einstellung der Gundposition für die J2-Achse" (siehe Seite 3-12)
 - Punkt (1) bis (3) aus "Einstellung der Gundposition für die J3-Achse" (siehe Seite 3-12)
 - Punkt (1) bis (2) aus "Einstellung der Gundposition für die J6-Achse" (siehe Seite 3-17)

HINWEIS

Die nachfolgenden Punkte für die Einstellung einzelner Achsen werden für alle Achsen gleichzeitig ausgeführt.

Die Abbildung 3-16 zeigt die Richtung an, in die die einzelnen Achsen bei der Einstellung der Grundposition gedreht werden.

Abb. 3-15: Grundpostion des Roboterarms

5 Betätigen Sie die [RPL]-Taste, um zum Menüeintrag "AXIS" zu gelangen.

Abb. 3-16: Darstellung des Menüs der Teaching Box

(6) Wählen Sie die Achsen, für die die Einstellung der Grundposition vorgenommen werden soll. Die Grundposition der J5-Achse ist bereits durchgeführt. Setzen Sie deshalb die fünfte Achse auf "0" und alle anderen Achsen auf "1". Bestätigen Sie die Eingabe mittels der [INP]-Taste.

HINWEIS

- Bei 5-achsigen Roboterarmen ist die J4-Achse nicht vorhanden.
- ⑦ Geben Sie zur Bestätigung eine "1" ein. Die Grundposition wird gesetzt.
- 8 Schalten Sie die Servoversorgungsspannung wieder ein.
- (9) Vermerken Sie die Grundposition auf dem Aufkleber auf der Batteriefachabdeckung.

3.2.3 Einstellung einer benutzerdefinierten Grundposition

Bei der Einstellung einer benutzerdefinierten Grundposition wird eine willkürlich gesetzte Position als Grundposition definiert. Die benutzerdefinierte Grundposition muss vor der Einstellung geteacht worden sein.

Schritt 1: Teachen der benutzerdefinierten Grundposition

Stellen Sie den [MODE]-Schalter des Steuergerätes in die Stellung "TEACH". Aktivieren Sie die Teaching Box, indem Sie den [ENABLE/DISABLE]-Schalter der Teaching Box in die "ENABLE"-Position drehen.

Nr.	Display-Darstellung	Tastenbetätigung	Beschreibung
1	<menu> .TEACH 2.RUN 3.FILE 4.MONI 5.MAINT 6.SET</menu>	- B (J5) 1 DEF	Das Menü "TEACH" wird ausgewählt.
2	<teach> (1) SELECT PROGRAM</teach>		Die Programmnummer "1" wird ausgewählt. (Es muss keine Programmnummer angegeben werden.)
3	PR:1 ST:1 LN:0 NO DATA	POS CHAR	Nach der Tasten- bestätigung wird das Menü zur Editierung der Positionsdaten angezeigt.
4	MO.POS () X: +0.00 Y: +0.00 Z: +0.00	STEP -X (J1) 0000000 (J4) MOVE SPACE PQR 0000000 7 YZ	Bewegen Sie den Roboterarm im Jog-Betrieb zu der Position, die als Grundposition definiert werden soll.
5	MO.POS (PO X: +0.00 Y: +0.00 Z: +0.00	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ POS \\ CHAR \end{array} \end{array} \begin{array}{c} \hline \\ \\ \end{array} \end{array} \begin{array}{c} \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Geben Sie die Posi- tionsnummer "P0" ein. Betätigen Sie gleich- zeitig die Tasten [ADD] und [MOVE] und lassen Sie nur die Taste [ADD] wieder los.
6	MO.POS (P0) X: +0.00 Y: +0.00 ADDITION	STEP MOVE	Es ertönt ein Summ- ton und eine Bestäti- gungsabfrage wird angezeigt. Quittieren Sie die Definition der neuen Position.

 Tab. 3-7:
 Teachen der benutzerdefinierten Grundposition (1)

1	۱r.	Display-Darstellung	Tastenbetätigung	Beschreibung
	7	MO.POS (PO) X: +132.30 Y: 254.10 Z: +32.10		Erneut ertönt ein Summton. Nach Anzeige von "ADDITION" ist die neu definierte Grund- position gespeichert.
	8	<menu> 1.TEACH 2.RUN 3.FILE 4.MONI 5.MAINT 6.SET</menu>	MENU # % 1	Nach Betätigung der [MENU]-Taste erscheint das Haupt- menü auf dem Display.

 Tab. 3-7:
 Teachen der benutzerdefinierten Grundposition (2)

Schritt 2: Einstellung der benutzerdefinierten Grundposition

Nr.	Display-Darstellung	Tastenbetätigung	Beschreibung
1	<menu> 1.TEACH 2.RUN 3.FILE 4.MONI 5.MAINT 6.SET</menu>	(J6) 5 STU	Das Menü "MAINTENANCE" wird ausgewählt.
2	<maint> 1.PARAM 2.INIT 3.BRAKE 4.ORIGIN 5.POWER</maint>	(J2) 4 MNO	Das Untermenü "ORIGIN" wird ausge- wählt.
3	<origin> 1.DATA 2.MECH 3.TOOL 4.ABS 5.USER</origin>	(J6) 5 STU	Die Einstellmethode "5.USER" wird ausge- wählt.
4	<origin> SERVO OFF OK? (1) 1:EXECUTE</origin>		Die Versorgungs- spannung der Servoantriebe wird ausgeschaltet.
5	Nachdem die Versorgungsspan Grundposition und zum Lösen d	nung der Servoantriebe abgeschaltet ist, wird das M der Bremsen angezeigt.	lenü zur Einstellung der
6	<tool> 12345678 BRAKE (00000000) AXIS (11111100) ORIGIN: NOT DEF</tool>	$ \begin{array}{c} $	Betätigen Sie die [RPL↓]-Taste und geben Sie den Wert "1" für die Achsen ein, für die der Nullpunkt gesetzt werden soll.
0	<tool> 12345678 CHANGES TO ORIGIN OK? (1) 1:EXECUTE</tool>		Mit der Eingabe einer "1" bestätigen Sie die eingegebenen Werte. Quittieren Sie die Grundposition mit der [INP]-Taste.

In diesem Schritt wird die geteachte Position als Grundposition definiert.

Tab. 3-8: Einstellen der benutzerdefinierten Grundposition

3.2.4 Aufzeichnung der Grundposition

Notieren Sie die Daten der Grundposition auf der mitgelieferten Datentabelle oder auf dem Datenaufkleber auf der Abdeckung des Batteriefachs. Somit haben Sie die Möglichkeit, die nächste Einstellung der Grundposition über Dateneingabe vorzunehmen.

ACHTUNG: Schalten Sie die Versorgungsspannung des Steuergerätes ab, bevor Sie die Abdeckung entfernen.

- ① Entfernen Sie die Abdeckung des Batteriefachs des Roboterarms. Auf der Innenseite befindet sich der Datenaufkleber, auf dem die Daten der Grundposition eingetragen sind.
- ② Die Daten für den Eintrag auf dem Datenaufkleber können vom Display der Teaching Box abgelesen werden. Rufen Sie dazu die folgenden Menüpunkte auf:
 - 1) 5.MAINT
 - 2) 4.ORIGIN
 - 3) 1.DATA
- ③ Übertragen Sie die Daten der Grundposition vom Display der Teaching Box auf den Aufkleber.
- ④ Montieren Sie die Abdeckung des Batteriefachs.

4 Anschluss und Referenzdaten

4.1 Der Roboterarm

4.1.1 Koordinatensystem des Roboters

Die folgende Abbildung zeigt die drei Koordinatensysteme des Roboterarms:

Abb. 4-1: Koordinatensysteme des Roboterarms

Bezeichnung	Bedeutung
Weltkoordinatensystem	Bezogen auf den Aufstellort
Basiskoordinatensystem	Bezogen auf die Standfläche des Roboterarms Der "Standard-Basiskoordinaten-Parameter" (MEXBS) gibt die Relation zum Weltkoordinatensystem an.
Handflanschkoordinatensystem	Bezogen auf den Handflansch
Werkzeugkoordinatensystem	Bezogen auf die Werkzeugspitze Der "Standard-Werkzeugkoordinaten-Parameter" (MEXTL) definiert die Abstandswerte zum Werkzeugkoordinatensystem.

 Tab. 4-1:
 Bedeutung der Koordinatensysteme

4.1.2 Außenabmessungen

In der Abb. 4-2 sind die Außenabmessungen des 5-achsigen Roboterarms RV-2AJ aufgeführt.

Abb. 4-2: Außenabmessungen des Roboterarms RV-2AJ

In der Abb. 4-3 sind die Außenabmessungen des 6-achsigen Roboterarms RV-1A aufgeführt.

Abb. 4-3: Außenabmessungen des Roboterarms RV-1A

4.1.3 Arbeitsbereich

Die folgende Abbildung zeigt den Bewegungsbereich des 5-achsigen Roboterarms RV-2AJ.

Abb. 4-4: Bewegungsbereich des Roboterarms RV-2AJ

HIMWEIS

Der angegebene Arbeitsbereich bezieht sich auf den Punkt P des Roboterarms ohne Greifhand.

Die folgende Abbildung zeigt den Bewegungsbereich des 6-achsigen Roboterarms RV-1A.

Abb. 4-5: Bewegungsbereich des Roboterarms RV-1A

HIMWEIS

Der angegebene Arbeitsbereich bezieht sich auf den Punkt P des Roboterarms ohne Greifhand.

4.2 Das Steuergerät

4.2.1 Bezeichnung der Komponenten

Abb. 4-6: Vorderseite des Steuergerätes

Nr.	Bezeichnung	Funktion
0	Hauptschalter	Ein-/Ausschalter der Versorgungsspannung
2	Startschalter	Startet den Roboter
3	Stoppschalter	Stoppt den Roboter
4	Alarm-Reset-Schalter	Quittiert einen Fehlercode
6	[NOT-HALT]-Schalter	Stoppt den Roboterarm bei Gefahr
6	TEACHING BOX-Anschluss-Schalter	Verhindert einen Alarm beim Abziehen der Teaching Box
0	[CHANG.DISP]-Taste	Anzeigewechsel auf dem Display
8	[END]-Taste	Stoppt das Programm
9	[SVO.ON]-Taste	Servoversorgung einschalten
0	[SVO.OFF]-Taste	Servoversorgung ausschalten
0	STATUS.NUMBER-Anzeige	Zeigt die Nummer des Programms oder Fehlercodes usw.
12	Anschlussbuchse für Teaching Box	Anschluss für die Teaching Box
ß	Anschlussbuchse für Personalcom- puter	RS232C-kompatibler Anschluss für einen PC
1	[MODE]-Schalter	Wahl der Betriebsart
6	[UP/DOWN]-Taste	Scrollt die Anzeige

 Tab. 4-2:
 Aufstellung der Komponenten an der Vorderseite des Steuergerätes

Abb. 4-7: Rückseite des Steuergerätes

Nr.	Bezeichnung	Funktion
0	Anschluss für Servovorsorgungskabel	Für Roboterversorgungsspannung
2	Anschluss für Signalkabel	Für Robotersteuerkabel
8	Anschluss für Netzzuleitung und Erdung	
4	Sicherungen	
6	Anschluss für externe Ein-/Ausgangsmodule	Für Anschlusskabel des Typs RV-E-E/A
6	Netzwerkanschluss der parallelen Ein-/Ausgangsmodule	Für Netzwerkkabel (NETcable-1)
0	Klemmenblock des externen NOT-HALT-Schalters	Für externen NOT-HALT-Schalter, Tür-Schließkontakt oder Signallampe

Tab. 4-3: Aufstellung der Komponenten an der Rückseite des Steuergerätes

4.2.2 Gehäuseabmessung

In der folgenden Abbildung sind die Außenabmessungen des Steuergerätes zusammengestellt:

Abb. 4-8: Abmessungen des Steuergerätes CR1

4.2.3 Externe Ein-/Ausgänge

Allgemeines

Die externen Ein-/Ausgänge sind in drei Gruppen gegliedert:

- Spezielle Ein-/Ausgänge
 Die Ein-/Ausgänge dienen zur Steuerung und Statusanzeige des Roboterarms.
- Allgemeine Ein-/Ausgänge Die Ein-/Ausgänge dienen zur Steuerung von Peripheriegeräten und können frei programmiert werden.
- Ein-/Ausgänge für die Greifhand Die Ein-/Ausgänge können zur Unterstützung von Handfunktionen programmiert werden. Dazu benötigen Sie die optionale Schnittstellenkarte für die pneumatisch betriebene Greifhand.

Die Ein-/Ausgangskapazität kann durch Anschluss von weiteren sieben externen parallelen Ein-/Ausgangsschnittstellenmodulen auf 240 Ein- und Ausgänge (inkl. Standardschnittstellenmodul) erweitert werden.

Gruppo	Nomo	Anzahl der E	in-/Ausgänge	Anschluss über	
Gruppe	Name	Eingang	Ausgang		
Standard	NOT-HALT	1	1	Schraubklemmenblock	
Standard	Parallele Ein-/Ausgangs- schnittstelle	16 allgemeine/ 6 vorbelegte	16 allgemeine/ 4 vorbelegte	Anschlussstecker	

Tab. 4-4: Externe Ein-/Ausgänge (Standard)

HINWEISE

Verwenden Sie zum Anschluss der externen parallelen Ein-/Ausgangsschnittstellen an Peripheriegeräte das Anschlusskabel RV-E-E/A.

Verwenden Sie zum Anschluss der externen parallelen Ein-/Ausgangsschnittstelle an das Steuergerät das Verbindungskabel NETcable-1.

NOT-HALT-Eingänge

Auf der Rückseite des Steuergerätes befinden sich Eingänge für den Anschluss eines potentialfreien NOT-HALT-Kreises, eines Tür-Schließkontaktes und einer Signallampe. Informationen zur Installation des NOT-HALT-Kreises, des Tür-Schließkontaktes und der Signallampe entnehmen Sie bitte dem Abs. 2.5.2. Detaillierte Beschreibungen der einzelnen Sicherheitsschaltkreise entnehmen Sie bitte dem Sicherheitstechnischen Handbuch.

Gruppe	Bezeichnung	Anschlussgröße	Beschreibung
Eingang	NOT-HALT	M4	Löst einen NOT-HALT des Roboterarms aus
			Automatikbetrieb
Eingang	Tür-Schließ- kontakt	M4	Wird die Tür während des Betriebs geöffnet, stoppt der Robo- ter im Not-Halt-Modus und die Servomotoren werden ausge- schaltet. Um die Servomotoren wieder einzuschalten, muss die Tür wieder geschlossen und der Not-Halt-Fehler zurückgesetzt werden.
			Teach-Modus
			Auch wenn die Tür geöffnet ist, können die Servomotoren wie- der eingeschaltet werden und der Roboterarm kann über die Teaching Box bewegt werden.
Eingang	Signallampe	M4	Zeigt einen NOT-HALT des Roboterarms an.

Tab. 4-5:Sondereingänge im Steuergerät

Vorsichtsmaßnahmen beim Anschluss externer Geräteeinheiten

4.2.4 Spezielle Ein-/Ausgänge

In der nachstehenden Tabelle sind die Funktionen aufgelistet, die den Ein-/Ausgängen zugewiesen werden können. Die Parameter werden den Signalnummern in der Reihenfolge Eingangssignalnummer/Ausgangssignalnummer zugewiesen. Die genaue Vorgehensweise zur Einstellung der Parameter finden Sie in der Bedienungs-/Programmieranleitung des Roboters. Die Anzahl der verfügbaren Ein-/Ausgangssignale kann durch die optionalen parallelen Ein-/Ausgangsschnittstellen vergrößert werden.

Parameter	Zuordnung	Bezeichnung	Beschreibung	Signal- pegel ^①	Werksein- stellung ^②
	Eingang	_	—		
TEACHMD	Ausgang	Ausgangssignal Teach-Modus	Zeigt den Teach-Betrieb an		-1, -1
	Eingang	_			
ATTOPMD	Ausgang	Ausgangssignal Au- tomatikbetrieb	Zeigt den Automatikbetrieb an		-1, -1
	Eingang	_	—		
ATEXTMD	Ausgang	Ausgangssignal externer Betrieb	Zeigt den externen Betrieb an		-1, -1
	Eingang	Eingangssignal Automatikbetrieb freigegeben	EIN: Automatikbetrieb freigegeben, AUS: Automatikbetrieb gesperrt	Н	
AUTOLINA	Ausgang	Ausgangssignal Automatikbetrieb freigegeben	Zeigt an, dass der Automatikbetrieb freigegeben ist		-1, -1
	Eingang	Startsignal	Startet alle Programme	Ŷ	
START	Ausgang	Ausgangssignal Programm aktiv	Zeigt einen aktiven Programmplatz an		3, 0
STOP	Eingang	Stoppsignal	Stoppt alle Programme Die Eingangssignalnummer ist auf "0" festgelegt. HINWEIS: Verwenden Sie für alle sicherheits- relevanten Stopps den NOT-HALT-Eingang.	н	0, -1
	Ausgang	Wartestatus aktiv	Zeigt an, dass die Abarbeitung der entsprechenden Programme vor- übergehend unterbrochen ist		
	Eingang	Programme zurück- setzen	Setzt den Wartestatus der Program- me und die Programme selbst zu- rück	Ŷ	
SLOTINIT	Ausgang	Ausgangssignal Programmwahl frei- gegeben	Zeigt an, dass die Programmwahl freigegeben ist		-1, -1
	Eingang	Fehler quittieren	Quittiert den aktuellen Fehler	1	
ERRRESET	Ausgang	Ausgangssignal Fehler	Zeigt an, dass ein Fehler aufgetreten ist		2, 2
	Eingang	Zyklischen Betrieb stoppen	Stoppt den zyklischen Betrieb	Н	
CYCLE	Ausgang	Ausgangssignal zyklischer Betrieb gestoppt	Zeigt an, dass der zyklische Betrieb gestoppt ist		-1, -1

 Tab. 4-6:
 Parameter f
 f
 in-/Ausg
 ange (1)

Parameter	Zuordnung	Bezeichnung	Beschreibung	Signal- pegel ^①	Werksein- stellung ^②
SRVOFF	Eingang	Servoversorgungs- spannung abschal- ten	Schaltet die Servoversorgungs- spannung ab; das Einschalten der Servos wird gesperrt	Н	1, –1
	Ausgang	Servos einschalten gesperrt	Zeigt an, dass das Einschalten der Servos gesperrt ist (Rückmeldung)		
SEVON	Eingang	Servoversorgungs- spannung einschal- ten	Schaltet die Spannungsversorgung für alle Servos ein	Ŷ	4 1
SHVON	Ausgang	Servoversorgungs- spannung einge- schaltet	Zeigt an, dass die Servoversor- gungsspannung eingeschaltet ist		4,1
	Eingang	Eingangssignal Betriebsrechte	Anforderung der Betriebsrechte für eine externe Steuerung	Ŷ	5.0
IOENA	Ausgang	Ausgangssignal Betriebsrechte	Zeigt an, dass der Betrieb über externe Signale freigegeben ist		5, 3
MELOOK	Eingang	Verriegelungssignal	Ein- bzw. Ausschalten des Verriege- lungszustandes	Ŷ	
MELOCK	Ausgang	Ausgangssignal Verriegelung aktiv	Zeigt an, dass der Roboterarm im verriegelten Zustand ist		
SAFEPOS	Eingang	Eingangssignal Ersatzposition anfahren	Anfahren der Ersatzposition	Ŷ	-1, -1
	Ausgang	Fährt die Ersatz- position an	Zeigt an, dass die Ersatzposition an- gefahren wird		
OUTRESET	Eingang	Allgemeine Ausgangssignale zurückgesetzt	Zurücksetzen der allgemeinen Aus- gangssignale	Ŷ	-1, -1
	Ausgang	_	—		1
	Eingang		—		
EMGERR	Ausgang	Ausgangssignal NOT-HALT	Zeigt den NOT-HALT-Status an		-1, -1
S1START	Eingang	Starteingang	Startet das entsprechende Pro- gramm	Ŷ	-1, -1
S32START	Ausgang	Programmplatz aktiv	Zeigt den aktuellen Status jedes Programmplatzes an		1,1
S1STOP	Eingang	Stoppeingang	Stoppt das entsprechende Pro- gramm	Н	-1, -1
: S32STOP	Ausgang	Programm gestoppt	Zeigt an, dass das Programm jedes Programmplatzes vorübergehend gestoppt ist		: 1,1
PRGSEL	Eingang	Programmwahl- signal	Einlesen der numerischen Eingabe zur Programmwahl	Ŷ	-1, -1
	Ausgang	_	—		
OVRDSEL	Eingang	Geschwindigkeits- übersteuerung aus- wählen	Einlesen der numerischen Geschwindigkeitsübersteuerung	Ŷ	-1, -1
	Ausgang	_	—		
	Eingang	Eingang für numeri- sche Eingabe (Start-Nr., End-Nr.)	Eingabe der Programmnummer, Geschwindigkeitsübersteuerung, Zuordnungsnummer	Н	-1, -1
	Ausgang	Ausgang für nume- rische Eingabe (Start-Nr., End-Nr.)	Ausgabe der Programmnummer, Geschwindigkeitsübersteuerung, Zuordnungsnummer		_1, _1

 Tab. 4-6:
 Parameter für Ein-/Ausgänge (2)

Parameter	Zuordnung	Bezeichnung	Beschreibung	Signal- pegel ^①	Werksein- stellung ^②
PROUT	Eingang	Ausgabeanforde- rung Programm- nummer	Anforderung zur Ausgabe der Pro- grammnummer	Ŷ	1 1
FIGUUT	Ausgang	Ausgabe der Programmnummer	Zeigt an, dass die Programmnum- mer über den numerischen Ausgang ausgegeben wird		-1, -1
	Eingang	Ausgabeanforde- rung Zeilennummer	Anforderung zur Ausgabe der Zei- lennummer	Ŷ	
LINEOUT	Ausgang	Ausgabe der Zeilennummer	Zeigt an, dass die Zeilennummer über den numerischen Ausgang ausgegeben wird		-1, -1
	Eingang	Ausgabeanforde- rung Geschwindig- keitsübersteuerung	Anforderung zur Ausgabe der Geschwindigkeitsübersteuerung	Ŷ	
	Ausgang	Ausgabe der Ge- schwindigkeitsüber- steuerung	Zeigt an, dass die Geschwindig- keitsübersteuerung über den nume- rischen Ausgang ausgegeben wird		
	Eingang	Ausgabeanforde- rung Fehlernummer	Anforderung zur Ausgabe der Feh- lernummer	Ŷ	
ERROUT	Ausgang	Ausgabe der Fehlernummer	Zeigt an, dass die Fehlernummer über den numerischen Ausgang ausgegeben wird		1,1
	Eingang	Freigabe Jog- Betrieb	Freigabe des Jog-Betriebs über externe Signale	Ŷ	
JOGENA	Ausgang	Freigabe Jog- Betrieb	Zeigt an, dass der Jog-Betrieb über externe Signale freigegeben ist		-1, -1
	Eingang	2-Bit-Eingabe des Job-Betriebs	Festlegung des Jog-Modus	Н	-1, -1
JOGIM	Ausgang	2-Bit-Ausgabe des Job-Betriebs	Ausgabe des aktuellen Jog-Modus		_1, _1
JOG+ ^⑤	Eingang	Jog-Vorschub in positiver Richtung für 8 Achsen	Festlegung des Jog-Betriebs in positiver Richtung	н	-1, -1
	Ausgang	—	—		
JOG- ⁽⁵⁾	Eingang	Jog-Vorschub in negativer Richtung für 8 Achsen	Festlegung des Jog-Betriebs in negativer Richtung	Н	-1, -1
	Ausgang	—	—		1
	Eingang	Eingangssignal Fehler Hand 1 :	Abfrage auf Handfehler	Н	
HNDERR1		Eingangssignal Fehler Hand 5			1,1
HNDERR5	Ausgang	Ausgangssignal Fehler Hand 1 :	Zeigt an, dass ein Handfehler aufgetreten ist		1,1
		Ausgangssignal Fehler Hand 5			

 Tab. 4-6:
 Parameter f

 Finite

 Parameter f

 Parameter f

 Parameter f

Parameter	Zuordnung	Bezeichnung	Beschreibung	Signal- pegel ^①	Werksein- stellung ^②
AIRERR1	Eingang	Luftdruck im Pneu- matiksystem 1 fehlerhaft : Luftdruck im Pneu- matiksystem 5 feh- lerhaft	Abfrage auf Pneumatikfehler		-1, -1
AIRERR5	Ausgang	Ausgabe Pneuma- tikfehler im System 1 : Ausgabe Pneuma- tikfehler im System 5	Zeigt an, dass ein Fehler im Pneumatiksystem aufgetreten ist		_1, _1
	Eingang	—	—		
USRAREA [®]	Ausgang	Über 8 Bereiche festgelegter Arbeits- bereich	Zeigt an, dass sich der Roboterarm im Arbeitsbereich befindet		-1, -1

 Tab. 4-6:
 Parameter f
 f
 in-/Ausg
 ange (4)

- ^① Signalpegel H: Die Funktion ist aktiv, wenn das externe Signal eingeschaltet ist. Die Funktion ist inaktiv, wenn das externe Signal ausgeschaltet ist. Signalpegel ↑: Die Funktion ist aktiv, wenn das externe Signal vom AUS- in den EIN-Zustand wechselt. Die aktivierte Funktion bleibt auch nach einem Wechsel des externen Signals in den AUS-Zustand erhalten. Erst bei einem erneuten Wechsel des externen Signals vom AUS- in den EIN-Zustand wird die Funktion zurückgesetzt.
- ⁽²⁾ Die Werkseinstellung "-1" bedeutet, dass die Funktion nicht aktiv ist.
- ^③ Die Eingabe erfolgt in der Reihenfolge: Eingangsstartnummer, Eingangsendnummer, Ausgangsstartnummer, Ausgangsendnummer. Geben Sie bei einer Ein-/Ausgabe eines aktuellen Wertes die Start- und Endnummer als binären Wert an. Dabei entspricht die Startnummer dem niederwertigen und die Endnummer dem höherwertigen Bit. Setzen Sie nur die zur Einstellung notwendigen Werte. Stehen z. B. bei einer Programmwahl nur die Programme 1 bis 6 zur Auswahl, reichen zur Darstellung 3 Bits. Es können bis zu 16 Bits gesetzt werden.
- Beispiele

 → Die Zuweisung des Starteingangssignals an Eingang 16 und des Ausgangssignals "Programm aktiv" an Ausgang 25 erfolgt über: Parameter START = [16, 25]

Die Zuweisung der numerische Eingabe an die Eingänge 6 bis 9 und der numerischen Ausgabe an die Ausgänge 6 bis 9 erfolgt über: Parameter IODATA = [6, 9, 6, 9]

- ^④ Die Eingabe erfolgt in der Reihenfolge: Eingangsstartnummer, Eingangsendnummer, Ausgangsstartnummer, Ausgangsendnummer. Geben Sie bei Aktivierung des aktuellen Jog-Modus die Start- und Endnummer als binären Wert an. Dabei entspricht die Startnummer dem niederwertigen, die Endnummer dem höherwertigen Bit. Setzen Sie nur die zur Einstellung notwendigen Werte.
- ⁽⁵⁾ Die Eingabe erfolgt in der Reihenfolge: Eingangsstartnummer, Eingangsendnummer, Ausgangsstartnummer, Ausgangsendnummer. Über die Startnummer wird die Achse J1/X festgelegt und über die Endnummer können Achsen bis zu J8/L2 festgelegt werden.
- ⁽⁶⁾ Die Eingabe erfolgt in der Reihenfolge: Ausgangsstartnummer, Ausgangsendnummer. Bis zu 8 Adressen können so nacheinander gesetzt werden.

Λ

Beispiele
→ Die Festlegung zweier Benutzerbereiche erfolgt über zwei Bits. Die Einstellung beider Benutzerbereiche auf den Ausgang 10 erfolgt über: Parameter USRAREA = [10, 10]

> Die Festlegung eines Benutzerbereichs auf die Ausgänge 10–11 erfolgt über: Parameter USRAREA = [10, 11]

Dabei müssen die Ausgänge in numerischer Reihenfolge angegeben werden. Ein Benutzerbereich kann nicht Ausgang 10 und 13 beinhalten.

 \triangle

Freigabe der zugewiesenen Eingangssignale

Die Gültigkeit eines anliegenden oder zugewiesenen Eingangssignals hängt vom Betriebszustand des Roboters ab.

Parameter	Bezeichnung	Gültigkeit	
SLOTINIT	Programme zurücksetzen	Keine Funktion während des Betriebs	
SAFEPOS	Eingangssignal Ersatzposition anfahren	(bei Ausgabe des START-Signals)	
OUTRESET	Allgemeine Ausgangssignale zurücksetzen		
PRGSEL	Programmwahlsignal		
START	Startsignal	Keine Funktion bei Freigabe des externen	
SLOTINIT	Programme zurücksetzen	Betriebs (bei Ausgabe des IOENA-Signals)	
SRVON	Servospannungsversorgung einschalten		
MELOCK	Verriegelungssignal		
SAFEPOS	Eingangssignal Ersatzposition anfahren		
PRGSEL	Programmwahlsignal		
OVRDSEL	Geschwindigkeitsübersteuerung auswählen		
JOGENA	Freigabe Jog-Betrieb		
SLOTINIT	Programme zurücksetzen	Keine Funktion bei Eingabe des Stoppsig-	
SAFEPOS	Eingangssignal Ersatzposition anfahren	als (bei Ausgabe des STOPSTS-Signals)	
JOGENA	Freigabe Jog-Betrieb		
SRVON	Servospannungsversorgung einschalten	Keine Funktion bei eingeschaltetem SRVOFF-Signal	
MELOCK	Verriegelungssignal	Funktion nur im Programmauswahlmodus (bei Ausgabe des SLOTINIT-Signals)	

Tab. 4-7: Gültigkeit der Eingangssignale

4.2.5 Programmsteuerung durch externe Signale

Zeitablaufdiagramme bei externer Steuerung

Die folgende Abbildung zeigt das Zeitablaufdiagramm für die Steuerung der Funktionen "Programmwahl", "Start", "Stopp" und "Neustart" durch externe Signale:

Abb. 4-9: Zeitablaufdiagramm 1 bei externer Steuerung

Die folgende Abbildung zeigt das Zeitablaufdiagramm für die Steuerung der Funktionen "Servo EIN/AUS", "Programmwahl", "Auswahl des Geschwindigkeitsübersteuerungswert", "Start", "Ausgabe der Zeilennummer" usw. durch externe Signale:

Abb. 4-10: Zeitablaufdiagramm 2 bei externer Steuerung

Die folgende Abbildung zeigt das Zeitablaufdiagramm für die Steuerung der Funktionen "Fehler zurücksetzen", "Allgemeinen Ausgang zurücksetzen", "Programm zurücksetzen" usw. durch externe Signale:

Abb. 4-11: Zeitablaufdiagramm 3 bei externer Steuerung

Die folgende Abbildung zeigt das Zeitablaufdiagramm für die Steuerung der Funktionen "Jog-Betrieb", "Anfahren der Ersatzposition", "Programm zurücksetzen" usw. durch externe Signale:

Abb. 4-12: Zeitablaufdiagramm 4 bei externer Steuerung

4.2.6 Parallele Ein-/Ausgangsschnittstelle (Standard)

Die parallele Ein-/Ausgangsschnittstelle (Standard) ist mit einem 50-poligen Stecker ausgerüstet. Wenn Sie externe Geräteeinheiten an einen Roboter anschließen möchten, benötigen Sie ein spezielles Ein-/Ausgangskabel RV-E-E/A (Details entnehmen Sie bitte Abs. 4.4.14).

Beschreibung:

- Das Steuergerät verfügt standardmäßig über eine parallele Ein-/Ausgangsschnittstelle (16E/16A)
- In Tab. 4-8 und 4-9 sind die Schaltungsspezifikationen der Ein-/Ausgangsschnittstelle zusammengestellt.
- Die Tabelle 4-10 zeigt die Pin-Belegung des Steckeranschlusses der externen Ein-/Ausgangsschnittstelle und die entsprechende Aderfarbe des optionalen Anschlusskabels.
- Anschluss-Pins, die sowohl einen Eintrag für allgemeine als auch für Spezialverwendung haben, unterstützen beide Funktionen.
- Bei der Programmierung können Sie auch die anderen Spezialein-/ausgänge zuweisen, die nicht für die allgemeine Ein-/Ausgabe vorgesehen sind.

ACHTUNG:

Sie können die Spezialeingänge während der Programmausführung in allgemeine Eingänge umdefinieren. Dies ist aus Sicherheitsgründen nur für die numerischen Dateneingänge zu empfehlen. Dagegen können Sie die Spezialausgänge nicht als allgemeine Ausgänge im Programm benutzen. Bei einem Versuch löst der Roboter einen Alarm aus.

• Benötigen Sie weitere Ein-/Ausgänge, so können Sie optional zusätzliche Ein-/Ausgangsschnittstellenmodule installieren.

HINWEIS

In Abs. 4.4.13 wird die Belegung der optionalen Ein-/Ausgangsschnittstellenmodule gezeigt.

Merkmal		Daten	Interne Schaltung
Тур		DC-Eingänge	
Anzahl der Eingänge		16	
Galvanische Trennung		Über Optokoppler	
Eingangsnennspannung		12 V DC/24 V DC	
Eingangsnennstrom		Ca. 3 mA (12 V DC)/7 mA (24 V DC)	
Arbeitsspannungsbereich		Welligkeit sollte < 5 % sein (10,2 V DC bis 26,4 V DC)	N cm (COM)
Einschaltspannung/-strom		> 8 V DC/2 mA	
Ausschaltspannung/-strom		< 4 V DC/1 mA	
Eingangswiderstand		Ca. 3,3 kΩ	Eingang)
Ansprechzeit	AUS -> EIN	< 10 ms (24 V DC)	5,5 K
	EIN -> AUS	< 10 ms (24 V DC)	
Gemeinsamer Bezugspunkt		Jeweils 8 Kanäle haben einen ge- meinsamen Bezugspunkt.	
Leitungsanschluss		Über Steckverbindung	R000501E

Tab. 4-8: Elektrische Spezifikationen der Eingangsschaltkreise

Merkmal		Daten	Interne Schaltung	
Тур		Transistorausgänge		
Anzahl der Ausgänge		16		
Galvanische Trennung		Über Optokoppler		
Lastnennspannung		12 V DC/24 V DC		
Lastspannungsbereich		10,2 V DC–30 V DC (Spannungsspitze bei 30 V DC))	Sicherung	
Maximaler Laststrom		0,1 A/Ausgang (100 %)	(12 V/24 V)	
Ausschaltreststrom		< 0,1 mA		
Maximaler Spannungsabfall bei EIN		0,9 V DC (max.)		
Ansprechzeit AUS -> EIN		< 2 ms (Hardware)	(0 V)	
	EIN -> AUS	< 2 ms (Hardware) bei Widerstands- last		
Sicherung		3,2 A (in jeder gemeinsamen Bezugs- punktleitung)		
Gemeinsamer Bezugspunkt		Jeweils 4 Kanäle besitzen einen ge- meinsamen Bezugspunkt.		
Leitungsanschluss		Über Steckverbindung		
Externe Spannungs- versorgung	Spannung	12 V DC/24 V DC (10,2–30 V DC)		
	Strom	60 mA (max. 24 V DC für jede ge- meinsame Bezugspunktleitung)	R000502E	

Tab. 4-9: Elektrische Spezifikationen der Ausgangsschaltkreise

HINWEIS

Das Steuergerät stellt keine Spannungsversorgung mit 24 V DC für die Ein-/Ausgangsschaltkreise zur Verfügung.

Abb. 4-13: Anschlussbeispiel für Ein-/Ausgangsmodule einer SPS aus der A-Serie

Din	Aderfarbe	Funktion		
Nr.		Allgemeine Verwendung	Spezial-Versorgungsspannung / Bezugspunkt	
1	Weiß		FG	
2	Braun		0 V für Pins 4–7	
3	Grün		+12 V/+24 V für Pins 4–7	
4	Gelb	Ausgang 0	Betrieb	
5	Grau	Ausgang 1	Servo EIN	
6	Rosa	Ausgang 2	Fehler	
7	Blau	Ausgang 3	Betriebsrechte	
8	Rot		0 V für Pins 10–13	
9	Schwarz		+12 V/+24 V für Pins 10–13	
10	Violett	Ausgang 8		
11	Grau-rosa	Ausgang 9		
12	Rot-blau	Ausgang 10		
13	Weiß-grün	Ausgang 11		
14	Braun-grün		COM0: Bezugspunkt für Pins 15–22	
15	Weiß-gelb	Eingang 0	Stopp (für alle Anwendungen)	
16	Gelb-braun	Eingang 1	Servo AUS	
17	Weiß-grau	Eingang 2	Fehler quittieren	

Übersicht der Pin-Belegung für den CN100-Anschluss (Kabel: RV-E-E/A)

Tab. 4-10: Übersicht der Pin-Belegung des Standardein-/ausgangsmoduls CN100 (1)
Din-		Funktion			
Nr.	Aderfarbe	Allgemeine Verwendung	Spezial-Versorgungsspannung / Bezugspunkt		
18	Grau-braun	Eingang 3	Start		
19	Weiß-rosa	Eingang 4	Servo EIN		
20	Rosa-braun	Eingang 5	Betriebsrechte		
21	Weiß-blau	Eingang 6			
22	Braun-blau	Eingang 7			
23	Weiß-rot				
24	Braun-rot				
25	Weiß-schwarz				
26	Braun-schwarz		FG		
27	Grau-grün		0 V für Pins 29–32		
28	Gelb-grau		+12 V/+24 V für Pins 29–32		
29	Rosa-grün	Ausgang 4			
30	Gelb-rosa	Ausgang 5			
31	Grün-blau	Ausgang 6			
32	Gelb-blau	Ausgang 7			
33	Grün-rot		0 V für Pins 35–38		
34	Gelb-rot		+12 V/+24 V für Pins 35–38		
35	Grün-schwarz	Ausgang 12			
36	Gelb-schwarz	Ausgang 13			
37	Grau-blau	Ausgang 14			
38	Rosa-blau	Ausgang 15			
39	Grau-rot		COM1: Bezugspunkt für Pins 40–47		
40	Rosa-rot	Eingang 8			
41	Grau-schwarz	Eingang 9			
42	Rosa-schwarz	Eingang 10			
43	Blau-schwarz	Eingang 11			
44	Rot-schwarz	Eingang 12			
45	Weiß-braun-schwarz	Eingang 13			
46	Gelb-grün-schwarz	Eingang 14			
47	Grau-rosa-schwarz	Eingang 15			
48	Blau-rot-schwarz				
49	Weiß-grün-schwarz				
50	Grün-braun-schwarz				

Tab. 4-10: Übersicht der Pin-Belegung des Standardein-/ausgangsmoduls CN100 (2)

Abb. 4-14: Anschluss und Pin-Belegung des parallelen Ein-/Ausgangsmoduls

4.3 Anschluss an einen PC

4.3.1 RS232C-Schnittstelle

Das Steuergerät verfügt an der Vorderseite über eine serielle RS232C-Schnittstelle für den Anschluss eines Personalcomputers.

Abb. 4-15: Anschluss und Pin-Belegung der RS232C-Schnittstelle

Pin-Nr.	Signalbezeichnung	Pin-Nr.	Signalbezeichnung
1	FG	14	Nicht belegt
2	SD (TXD)	15	Nicht belegt
3	RD (RXD)	16	Nicht belegt
4	RS (RTS)	17	Nicht belegt
5	CS (CTS)	18	Nicht belegt
6	DR (DSR)	19	Nicht belegt
7	SG	20	ER (DTR)
8	Nicht belegt	21	Nicht belegt
9	Nicht belegt	22	Nicht belegt
10	Nicht belegt	23	Nicht belegt
11	Nicht belegt	24	Nicht belegt
12	Nicht belegt	25	Nicht belegt
13	Nicht belegt		

Tab. 4-11: Signalbelegung der RS232C-Schnittstelle

Signalname	Ein-/Ausgang	Funktion
FG		Masse/Abschirmung (verbunden mit dem Erdanschluss des Steuergerätes)
SD (TXD)	Ausgang	Sendedaten vom Steuergerät zum PC
RD (RXD)	Eingang	Empfangsdaten vom PC zum Steuergerät
RS (RTS)	Ausgang	Sendeanforderungen an den PC
CS (CTS)	Eingang	Sendefreigabe vom PC
DR (DSR)	Eingang	Bereit-Signal vom PC
SG	_	Signalmasse
ER (DTR)	Ausgang	Bereit-Signal des Steuergerätes

Tab. 4-12: Funktion der RS232C-Schnittstellensignale

4.3.2 Einstellung der RS232C-Schnittstelle

In der folgenden Tabelle sind die Standardeinstellungen der seriellen RS232C-Schnittstelle zusammengefasst:

Bezeichnung	Einstellung
Baudrate	9600 bps
Datenlänge	8 Bits
Paritätsprüfung	Gerade Parität
Anzahl der Stopp-Bits	2 Bits
Steuerbefehl für "Neue Zeile" (CR)	Nur "CR"

Tab. 4-13: Schnittstellenparameter

ACHTUNG:

Bevor Sie das Schnittstellenkabel mit den Anschlussbuchsen des PCs oder des Steuergerätes verbinden, müssen Sie eine eventuell vorhandene statische Aufladung Ihres Körpers gegen Erde ableiten!

4.3.3 Zeitverhalten der Signalleitung

Die im technischen Standard für RS232C-Schnittstellen festgelegten Spezifikationen beinhalten alle Angaben der elektrischen Daten des Anschlusssteckers und der Pin-Belegung.

Es kann bei der Kommunikation zwischen Robotersystem und Personalcomputer aufgrund von Protokollproblemen oder verschiedenen Pinbelegungen der Schnittstelle zu Problemen kommen. In diesem Zusammenhang ist das Verständnis der Signalfunktionen auf der Schnittstelle von großer Bedeutung. Der gesamte Datenaustausch wird im ASCII-Code abgewickelt.

Zeitablauf der Datenübertragung zwischen PC und Robotersystem

Roboterseite

Der Roboter schaltet die Leitungssignale ER (DTR) und RS (RTS) nach "HIGH" und wartet auf Daten. Wurde das Befehl-Ende-Zeichen ("CR"=ØDh) empfangen, werden ER (DTR) und RS (RTS) nach "LOW" geschaltet, um die Daten zu verarbeiten. Das Befehl-Ende-Zeichen kann ("CR"=ØDh) und/oder ("LF"=ØAh) sein. Während der Verarbeitung des Ende-Befehls sind die Pegel von ER (DTR) und RS (RTS) nach "LOW" geschaltet.

• PC-Seite

Der PC sollte das erste Zeichen senden, während der Signalzustand von DR (DSR) auf "HIGH" ist. Das nächste Zeichen sollte mit der ansteigenden Flanke des DR-Signals (DSR) gesendet werden. Das Robotersystem meldet einen Fehler, wenn der PC kontinuierlich Daten bei ständig gesetztem DR-Signal (DSR) sendet.

Abb. 4-16: Zeitablauf der Datenübertragung vom PC zum Robotersystem

Zeitablauf der Datenübertragung zwischen Robotersystem und PC

Roboterseite

Der Roboter startet die Datenübertragung, wenn er das Leitungssignal ER (DTR) nach "HIGH" schaltet. Mit dem letzten Zeichen (Ende-Code "0Dh") wird die ER-Leitung (DTR) nach "LOW" geschaltet.

PC-Seite

Der PC schaltet das RS-Signal (RTS) auf "HIGH" und wartet auf Daten vom Robotersystem.

Abb. 4-17: Zeitablauf der Datenübertragung vom Robotersystem zum PC

HINWEISE

Einige PC-Systeme bedienen während der Datenübertragung zum Robotersystem die Signalleitung DR oder CS nicht richtig. Damit der Roboter keinen Fehler meldet, benötigen derartige Computersysteme eine Verzögerungszeit bei der Übertragung.

Wenn die Verarbeitungsgeschwindigkeit des PCs zu langsam ist, kommt es zu Übertragungsfehlern (Pufferüberlauf). Der Roboter benötigt dann eine Verzögerungszeit bei der Übertragung, um diesen Fehler zu verhindern.

Das Robotersystem kann keine neuen Befehle empfangen, wenn ein Direkt-Befehl ausgeführt wird (z. B. der MOV-Befehl). Senden Sie erst dann neue Daten, wenn der Befehl komplett abgearbeitet ist.

Wenn das Robotersystem im Betrieb einen falschen Befehl über die RS232C-Schnittstelle empfängt, wird eine Fehlermeldung erzeugt. In diesem Fall muss der Fehler durch Betätigen der [RESET]-Taste am Steuergerät quittiert werden.

4.3.4 Anschluss an ein PC-System

Für den Anschluss eines Personalcomputers an das Steuergerät benötigen Sie das optional erhältliche RS232C-Verbindungskabel RV-CAB2 oder RV-CAB4.

Schalten Sie das Steuergerät und den Computer aus, bevor Sie beide Systeme mit dem Kabel verbinden.

4.4 Optionen und Zubehör

4.4.1 Übersicht

Die MELFA-Roboterarme RV-2AJ und RV-1A verfügen über eine breite Palette von Optionen. Damit können die Robotersysteme an unterschiedliche Einsatzgebiete angepasst werden.

Teilesatz-Optionen

Eine Teilesatz-Option beinhaltet mehrere verschiedene Einzelkomponenten (z. B. pneumatisch betriebener Greifhandsatz). Im Lieferumfang sind alle für die komplette Funktion benötigten Teile enthalten.

Einzel-Optionen

Eine Einzel-Option besteht aus einer oder mehreren baugleichen Komponenten. Diese Optionen können Sie nach Ihren speziellen Anforderungen zusammenstellen.

In der folgenden Tabelle sind alle verfügbaren Konstruktions- und Installations-Optionen zusammengefasst:

Pos. Nr.	Bezeichnung	Тур	Referenz
1	Motorbetriebener Greifhandsatz	4A-HM01	Siehe Abs. 4.4.2
2	Pneumatisch betriebener Greifhandsatz	4A-HP01E	Siehe Abs. 4.4.3
3	Handflanschadapter	1A-HA01	Siehe Abs. 4.4.4
4	Magnetventilsatz	1E-VD01E, 1E-VD02E	Siehe Abs. 4.4.5
5	Anschlusskabel für Handsteuersignale	1A-HC20	Siehe Abs. 4.4.6
6	Anschlusskabel für Handsensorsignale	1E-GR35S	Siehe Abs. 4.4.7
7	Spiralschlauch für Greifhand	1E-ST0402C, 1E-ST0404C,	Siehe Abs. 4.4.8
8	Leistungs- und Steuerkabel	1E-5CBL-N	Siehe Abs. 4.4.9
9	Teaching Box	R28TB	Siehe Abs. 4.4.10
10	Steuermodul der pneumatisch betriebenen Greifhand	2A-RZ375	Siehe Abs. 4.4.12
11	Erweiterungsmodul für das Steuergerät	CR1-EB3	Siehe Abs. 4.4.11
12	Parallele Schnittstellen für Ein-/Ausgänge	2A-RZ371	Siehe Abs. 4.4.13
13	Anschlusskabel für externe Ein-/Ausgänge	RV-E-E/A	Siehe Abs. 4.4.14
14	Anschlusskabel für Personalcomputer	RV-CAB2 RV-CAB4	Siehe Abs. 4.4.15

 Tab. 4-14:
 Übersicht der verfügbaren Optionen

4.4.2 Motorbetriebener Greifhandsatz

Bestellangaben

Typ.-Nr.: 4A-HM01

Beschreibung

Der Greifhandsatz beinhaltet die motorbetriebene Greifhand und alle notwendigen Zubehörteile. Die motorbetriebene Greifhand ist besonders für den Einsatz in Laboratorien geeignet, da keine Druckluftversorgung benötigt wird. Die Greifkraft ist einstellbar. Die Lebensdauer beträgt ca. 10 Mio. Greifzyklen bei einer Belastung von 50 %.

Nr.	Bezeichnung	Тур	Anzahl	Bemerkung
0	Motorbetriebene Greifhand	1A-HM01	1	Mit Handmeldekabelanschluss
2	Steuermodul	2A-RZ364	1	Steckkartenmodul
3	Spiralkabel	1A-GHCD	1	
4	Montageschrauben	M3 × 8	4	
6	Montageschrauben	M3 × 12	2	
6	Handflanschadapter	1A-HA01	1	Zur mechanischen Installation der Greifhand am Roboterarm

	A 4 C .	I lla a un l'a lat al a .	
Ian	4-15	I INPRSICHT NPS	s i leteri imtanos
I UNI	- <i>I</i> U.		

Bezeichnung		Daten	Bemerkung
Antrieb		DC-Servomotor	
Greifkraft		4,9–68,6 N	Je Greiferseite 2,45–34,3 N
Betriebstemperatur		0– +40°C	
Luftfeuchtigkeit		45-85 %	
Lebensdauer		1 Mio. Greifzyklen 10 Mio. Greifzyklen	Bei 100-%-Greifkrafteinstellung, bei 50-%-Greifkrafteinstellung
Wiederholgenauigkeit		0,03 mm	
Umgebungsbedingung	gen	Kein Ölnebel, Späne oder Staub	
Greifhandsensoren		Keine	
Gewicht der Greifhand	k	0,59 kg	Beinhaltet den Handflanschadapter
Maximale Belastung	Radial	295 N	Beachten Sie bei der Montage der Finger-
	Mpo Moment	6,2 Nm	aufnahme, dass keine große Stoßbelas- tung auf das Ende des Roboterarms ein-
	Mro Moment	10,8 Nm	wirkt.
	Myo Moment	6 Nm	
Image: Pradial Mpo, Mro, Myo: Momente für die Fingerlänge L Image: Mpo Image: Mpo		ür die Fingerlänge L	
			R000827C

Abb. 4-18: Abmessungen der motorbetriebenen Hand

HINWEIS Die angegebenen Nummern beziehen sich auf Tab. 4-15.

4.4.3 Pneumatisch betriebener Greifhandsatz

Bestellangaben

Typ.-Nr.: 4A-HP01E

Beschreibung

Der pneumatisch betriebene Greifhandsatz besteht aus der Greifhand und allen zum Betrieb notwendigen Komponenten. Die Greifhand besitzt eine Lebensdauer von 10 Mio. Greifzyklen. In der Greifhand sind Sensoren für die Rückmeldung der Greiferstellung integriert.

Lieferumfang

Nr.	Bezeichnung	Тур	Anzahl	Bemerkung
0	Pneumatisch betriebene Greif- hand	1A-HP01E	1	Mit Spiralkabel und Pneumatikanschlüssen
2	Steuermodul	2A-RZ375	1	Steckkartenmodul
3	Magnetventilsatz (einfach)	1E-VD01E	1	Siehe Abs. 4.4.5
4	Spiralschlauch für Greifhand	1A-ST0402C	1	1 Satz = 2 Stück; siehe Abs. 4.4.8
6	Spiralkabel	1A-GHCD	1	
6	Montageschrauben	M3 × 8	4	
0	Montageschrauben	M3 × 12	4	
8	Handflanschadapter	1A-HA01	1	Zur mechanischen Installation der Greifhand am Roboterarm

Tab. 4-17: Übersicht des Lieferumfangs

Bezeichnung		Daten	Bemerkung
Betriebsmedium		Ölfreie Druckluft	
Betriebsdruck		0,4–7,0 bar	
Betriebstemperatur		0– +40°C	
Greifhub		12 mm	
Lebensdauer		10 Mio. Greifzyklen	
Greifprinzip		Doppelgreifer	
Gewicht		0,45 kg	Beinhaltet den Handflansch-Adapter
Greifhandsensor		AUF-Seite und ZU-Seite	
Druckluftanschlüsse		Ø4 (Schnellkupplung)	Anschlussschlauch Ø4
Maximale Belastung	Radial	686 N	Beachten Sie bei der Montage der Finger-
	Mpo Moment	6,07 Nm	aufnahme, dass keine große Stoßbelas- tung auf das Ende des Roboterarms ein-
	Mro Moment	10,6 Nm	wirkt.
	Myo Moment	5,88 Nm	
		Mpo, Mro, Myo: Momente f	ür die Fingerlänge L
$\begin{array}{c} L = 100 \\ \hline \\ Radial \\ \hline \\ L = 10 \\ \hline \\ \\ \\ L = 10 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $			

Tab. 4-18: Technische Daten

Abb. 4-19: Abmessungen der pneumatisch betriebenen Greifhand

HINWEIS Die angegebenen Nummern beziehen sich auf Tab. 4-17.

4.4.4 Handflanschadapter

Bestellangaben

Typ.-Nr.: 1A-HA01

Lieferumfang

Bezeichnung	Тур	Anzahl	Bemerkung
Handflanschadapter	BU164D693H01	1	
Montageschrauben	M3 × 8	4	

Bezeichnung	Daten
Material	Aluminium-Legierung
Gewicht	0,07 kg

Tab. 4-20: Technische Daten

Abb. 4-20: Abmessungen des Handflanschadapters

4.4.5 Magnetventilsatz

Bestellangaben

Typ.-Nr. (Einzelventil): 1E-VD01E Typ.-Nr. (Doppelventil): 1E-VD02E

Beschreibung

Mit dieser Option kann das am Roboterarm montierte Greifwerkzeug gesteuert werden. Dabei steht eine Einzel- und Doppelversion zur Verfügung. Der Ventilsatz beinhaltet alle für die Installation notwendigen Teile, wie Abzweigverteiler, Kupplungsstücke und Dämpfer. Zudem beinhaltet er ein Handsteuerkabel. Dieses ist am Ventilsatz angeschlossen.

HINWEIS

Für den Greifhandbetrieb mit Handsteuerkabel muss die Schnittstellenkarte für die pneumatisch betriebene Greifhand installiert sein. Eine detaillierte Beschreibung der Schnittstellenkarte entnehmen Sie bitte Abs. 4.4.12.

Lieferumfang

Bozoichnung	Тур	Anzahl		Befestigung	Zubehör
Bezeichnung Typ		Einzel	Doppel		
Magnetventilsatz (einfach)	1E-VD01E	1	_	Mit 2 Montage-	Handsteuerkabel
Magnetventilsatz (zweifach)	1E-VD02E	_	1	(M3 × 25)	(bereits installiert)

Tab. 4-21: Übersicht des Lieferumfangs

Technische Daten

Bezeichnung	Daten
Anzahl der Stellungen	2
Ventilspule	Doppelmagnetspule
Betriebsmedium	Ölfreie Druckluft
Schaltprinzip	Zapfenform
Effektiver Querschnitt (CV-Wert)	1,5 mm (0,08)
Betriebsdruck	2–7 bar
Garantierte Druckfestigkeit	10 bar
Reaktionszeit	< 12 ms bei 24 V DC
Max. Betriebsfrequenz	5 Hz
Umgebungstemperatur	−5 bis +50 °C

Tab. 4-22: Technische Daten des Ventils

Bezeichnung	Daten
Schaltung	Die Ventilspule besitzt eine eingebaute Freilaufdiode.
Betriebsspannung	24 V DC, ±10 %
Stromaufnahme	40 mA
Isolation	Тур В
Isolationswiderstand	> 100 MΩ
Schutzmaßnahme	Freilaufdiode

Tab. 4-23 Technische Daten der Ventilspule

Abb. 4-21: Übersicht der Magnetventilsätze

Nr.	Bezeichnung	Einfach	Doppelt	Daten
0	Magnetventil	1	2	
2	Leitungsverteilerblock	1	1	
3	Schnellkupplung	2	4	Ø4
4	Verschlussplatte	1	0	
6	Schnellkupplung	1	1	Ø6
6	Dämpfer	1	1	
0	Anschlussstecker	2	4	
	Montageschrauben	2	2	M3 × 25

Tab. 4-24: Teilebezeichnung des Magnetventils

4.4.6 Anschlusskabel für Handsteuersignale (Magnetventilanschluss)

Bestellangaben

Typ.-Nr.: 1E-GR35S

Beschreibung

Dieses Anschlusskabel wird benötigt, wenn Sie nicht den standardmäßigen Magnetventilsatz verwenden. Ein Ende des Anschlusskabels ist mit Anschlusssteckern ausgerüstet. Diese werden für den Anschluss an den Roboterarm benötigt.

HINWEIS

Die Ansteuerung des Magnetventilsatzes ist nur nach Einbau der Schnittstellenkarte für die pneumatisch betriebene Greifhand in das Steuergerät möglich.

Lieferumfang

Bezeichnung	Тур	Anzahl	Bemerkung
Handsteuerkabel	1E-GR35S	1	

Tab. 4-25: Übersicht des Lieferumfangs

Bezeichnung	Daten	Bemerkung
Anzahl der Adern	2 × 2 Adern	Das Kabel ist einseitig mit Anschlusssteckern ausgerüstet.
Aderquerschnitt	0,3 mm ²	
Gesamtlänge	350 mm	

Tab. 4-26: Technische Daten des Handsteuerkabels

Abb. 4-22: Abmessungen des Handsteuerkabels

4.4.7 Anschlusskabel für Handsensorsignale

Bestellangaben

Typ.-Nr.: 1A-HC20

Beschreibung

Dieses Anschlusskabel wird benötigt, wenn Sie eine selbstangefertigte pneumatisch betriebene Greifhand einsetzen möchten. Bei einer pneumatisch betriebenen Greifhand ist es notwendig, die Stellung der Greifhand zu überwachen. Ein Ende des Anschlusskabels ist mit einem Stecker für die Handsensorsignale ausgerüstet. Das andere Ende ist unkonfektioniert und kann individuell verdrahtet werden.

HINWEIS

Die Ansteuerung des Magnetventilsatzes ist nur nach Einbau der Schnittstellenkarte für die pneumatisch betriebene Greifhand in das Steuergerät möglich.

ACHTUNG: Nicht angeschlossene Anschlussdrähte sind zu isolieren!

Lieferumfang

Anzahl	Bezeichnung	Тур	Bemerkung
1	Handsensorkabel	1A-HC20	

Tab. 4-27: Übersicht des Lieferumfangs

Technische Daten

Bezeichnung	Daten	Bemerkung
Anzahl der Adern	8	
Aderquerschnitt	0,2 mm ²	
Gesamtlänge	370 mm	Der Spiralabschnitt des Kabels ist ca. 150 mm lang.

Tab. 4-28: Technische Daten des Handsensorkabels

Abb. 4-23: Abmessungen des Handsensorkabels

ACHTUNG:

Sollten Sie einen Kurzschluss an diesem Kabel verursachen, kann die Sicherung auf der Platine im Robotersockel zerstört werden.

4.4.8 Spiralschlauch für Greifhand

Bestellangaben

TypNr. (einfach):	1E-ST0402C
TypNr. (zweifach):	1E-ST0404C

Beschreibung

Die Spiralschläuche sind für den Einsatz mit der pneumatisch betriebenen Greifhand konzipiert.

Lieferumfang

Anzahl	Bezeichnung	Тур	Bemerkung
1	Spiralschlauch (einfach)	1E-ST0402C	$2 \times \emptyset 4$ mm Schlauch für einfache Greifhand
1	Spiralschlauch (zweifach)	1E-ST0404C	$4 \times \emptyset 4$ mm Schlauch für zweifache Greifhand

Tab. 4-29: Übersicht des Lieferumfangs

Bezeichnung	Daten
Material	Polyurethan
Größe	Außendurchmesser 4 mm, Innendurchmesser 2,5 mm

Tab. 4-30: Technische Daten des Spiralschlauchs

Abb. 4-24: Abmessungen der Spiralschläuche

4.4.9 Leistungs- und Steuerkabel

Bestellangaben

Typ.-Nr.: 1E5CBL-N

Beschreibung

Mit dem Leistungs- und Steuerkabel können Sie die Distanz zwischen dem Steuergerät und dem Roboterarm verlängern. Dabei haben Sie die Möglichkeit, die mitgelieferten Verbindungskabel durch längere Kabel zu ersetzen. Das mitgelieferte Kabel besitzt eine Länge von 5 m.

ACHTUNG:

Die Verbindungskabel zwischen Roboterarm und Steuergerät sind nur für eine feste Verlegung geeignet. Ein Einsatz in einer Schleppkette ist zum Beispiel nicht möglich.

Technische Daten

Bezeichnung	Daten
Verfügbare Längen	5 m
Minimaler Krümmungsradius	Größer 100 mm
Maximale Bewegungsgeschwindigkeit	2000 mm/s
Schutzart	Ölabweisende Ummantelung
Aderquerschnitt des Leistungskabels	0,75 mm ²
Aderquerschnitt des Steuerkabels	0,2 mm²/0,75 mm²
Anzahl der Adern des Leistungskabels	10 (gesamt 9)
Anzahl der Adern des Steuerkabels	6/1 (gesamt 7)

Tab. 4-31: Technische Daten des Leistungs- und Steuerkabels

4.4.10 Teaching Box

Bestellangaben

Typ.-Nr.: R28TB

Beschreibung

Die Teaching Box wird für den Teach- und den Jog-Betrieb benötigt. Zur Unterstützung bei der Programmierung und der Robotersteuerung ist ein LCD-Display integriert. Auf dem Display werden 4 Zeilen zu jeweils 16 Zeichen dargestellt.

Auf der Rückseite der Teaching Box befindet sich ein dreistufiger Totmannschalter. Dieser muss während des Jog-Betriebs in der Mittelstellung gehalten werden. Sobald der Totmannschalter losgelassen oder durchgedrückt wird, stoppt der Roboterarm.

Lieferumfang

Anzahl	Bezeichnung	Тур	Bemerkung
1	Teaching Box	R28TB	Wird mit 7-m-Anschlusskabel und Handschlaufe geliefert

Tab. 4-32: Übersicht des Lieferumfangs

Technische Daten

Merkmal	Daten
Abmessungen	153 mm \times 203 mm \times 70 mm (B \times H \times T)
Gehäusefarbe	Lichtgrau
Gewicht	Ca. 0,5 kg (ohne Kabel)
Anschlussart	Runder Stecker mit 30 Pins für den Anschluss an das Steuergerät
Schnittstelle	RS422
Display	LCD-Display mit 4 Zeilen zu 16 Zeichen und Hintergrundbeleuchtung
Bedienteil	28 Tasten
Schutzart	IP 65

Tab. 4-33: Technische Daten der Teaching Box

Totmannschalter

Position	Funktion
Keine Betätigung	Der Roboterarm ist gestoppt. $^{\textcircled{0}}$
Mittelstellung	Der Roboterarm kann betrieben werden. Der Teach-Modus ist freige- geben.
Durchgedrückt	Der Roboterarm ist gestoppt.

Tab. 4-34: Funktionen des Totmannschalters

^① Funktionen wie z. B. Programmeditierung oder Statusanzeige sind möglich; ein Betrieb des Roboterarms ist nicht möglich. Das Durchdrücken bzw. Loslassen des Totmannschalters bewirkt die Abschaltung der Servoversorgungsspannung.

Abb. 4-25: Außenabmessungen und Bedienelemente der Teaching Box R28TB

4.4.11 Erweiterungsmodul für das Steuergerät

Bestellangaben

Typ.-Nr.: CR1-EB3

Beschreibung

Dieses Erweiterungsmodul müssen Sie installieren, wenn Sie eine zusätzliche Schnittstellenkarte (CC-Link-, ETHERNET-, serielle Schnittstellenkarte und Schnittstellenkarte für Zusatzachsen) installieren möchten. In diesem Modul können Sie maximal 3 Schnittstellenkarten montieren.

Lieferumfang

Anzahl	Bezeichnung	Тур	Bemerkung
1	Erweiterungsmodul	CR1-EB3	Mit Standfüßen aus Gummi
4	Montageschrauben		

Tab. 4-35 ÜbersichtdesLieferumfangs

Technische Daten

Merkmal	Daten	Bemerkung
Anzahl der Steckplätze	3	RT-Bus 1, 2, 3
Spannungsversorgung	Über die RT-Bus-Verbindung mit dem Steuergerät	
Max. Laststrom	3 A	1 A/Steckplatz
Umgebungstemperatur	0–40 °C	
Luftfeuchtigkeit	45–85 %	
Erdung	Erdungsklasse 3	Über separate Anschlussklemme; Erdungswiderstand \leq 100 Ω
Konstruktion	Bodenaufstellung	
Abmessungen ($B \times H \times T$)	87,5 mm × 166 mm × 290 mm	
Gewicht	Ca. 3 kg	

Tab. 4-36: Technische Daten

Abb. 4-26: Abmessungen des Erweiterungsmoduls

4.4.12 Steuermodul für die pneumatisch betriebene Greifhand

Bestellangaben

Typ.-Nr.: 2A-RZ375

Beschreibung

Über diese Schnittstellenkarte kann das am Roboterarm befestigte Greifwerkzeug angesteuert werden.

- Mit dieser Schnittstelle können bis zu acht Handausgänge angesteuert werden.
- Die acht Handausgänge können auch ohne die Schnittstellenkarte für die pneumatisch betriebene Greifhand verwendet werden.
- Über zusätzliche parallele Ein-/Ausgangsschnittstellen können mehr als acht Ein-/Ausgangssignale verarbeitet werden. Detaillierte Informationen über die zusätzlichen Ein-/Ausgangsschnittstellen entnehmen Sie Abs. 4.4.13.

Lieferumfang

Anzahl	Bezeichnung	Тур	Bemerkung
1	Schnittstellenkarte für pneumatisch betriebene Greifhand	2A-RZ375	zur Steuerung von 8 Handausgängen

Tab. 4-37: Übersicht des Lieferumfangs

Merkmal		Daten	Interne Schaltung
Тур		Transistorausgänge	
Anzahl der Aus	gänge	8	
Galvanische Tre	ennung	Über Optokoppler	
Lastnennspann	ung	24 V DC	
Lastspannungsl	pereich	21,6 V DC-26,4 V DC	
Maximaler Lasts	strom	0,1 A/Ausgang (100 %)	
Ausschaltreststrom		< 0,1 mA	Sicherung (12 V/24 V)
Maximaler Spannungsabfall beim Einschalten		0,9 V DC (max.)	
Ansprechzeit	AUS -> EIN	< 2 ms (Hardware)	
	EIN -> AUS	< 2 ms (Hardware) bei Widerstands- last	→ · · · · · · · · · · · · · · · · · · ·
Sicherung		1,6 A (in jeder gemeinsamen Bezugs- punktleitung)	
Gemeinsamer Bezugspunkt		8 Kanäle besitzen einen gemeinsa- men Bezugspunkt.	* GRn = GR1–GR8
Leitungsanschlu	ISS	Steckverbinder auf Steuerkarte RZ387	
Spannungsvers	orgung	5 V DC über Steuerkarte RZ387	BODD502F

Technische Daten

Tab. 4-38: Technische Daten

AMITSUBISHI ELECTRIC

4.4.13 Parallele Schnittstellen für Ein-/Ausgänge

Bestellangaben

Typ.-Nr.: 2A-RZ371

Beschreibung

Mit diesem Modul kann die externe Ein-/Ausgangskapazität des Robotersystems erweitert werden. Das Verbindungskabel (RV-E-E/A) ist nicht im Lieferumfang enthalten.

Lieferumfang

Anzahl	Bezeichnung	Тур	Bemerkung
1	Parallele Ein-/Ausgangsschnittstelle	2A-RZ371	Freie Eingänge: 32, freie Ausgänge: 32

Tab. 4-39: Übersicht des Lieferumfangs

Merkmal		Daten	Interne Schaltung	
Тур		DC Eingänge		
Anzahl der Eingänge		32		
Galvanische Trennung		Über Optokoppler		
Eingangsnenns	spannung	12 V / 24 V DC		
Eingangsnenns	strom	Ca. 3 mA (12 V DC) / 7 mA (24 V DC)		
Arbeitsspannungsbereich		10,2 V–26,4 V DC (Welligkeit sollte < 5 % sein.)	(COM)	
Einschaltspannung/-strom		> 8 V DC / 2 mA	820	
Ausschaltspan	nung/-strom	< 4 V DC / 1 mA	(Eingang)	
Eingangswider	stand	Ca. 3,3 kΩ	0,0 K	
Ansprechzeit	AUS -> EIN	< 10 ms (24 V DC)		
EIN -> AUS		< 10 ms (24 V DC)		
Gemeinsamer Bezugspunkt		Jeweils 8 Känale haben einen gemeinsamen Bezugspunkt.		
Leitungsanschluss		Über Steckverbinder	R000501E	

Tab. 4-40: Elektrische Daten der Eingangsschaltkreise

Merkmal		Daten	Interne Schaltung	
Тур		Transistorausgänge		
Anzahl der Aus	gänge	32		
Galvanische Tr	ennung	Über Optokoppler		
Lastnennspann	ung	12 V DC/24 V DC		
Lastspannungs	bereich	10,2 V DC–30 V DC (Spannungsspitze bei 30 V DC)	Sicherung	
Maximaler Last	strom	0,1 A/Ausgang (100 %)	(12 V/24 V)	
Ausschaltrestst	rom	Kleiner 0,1 mA		
Maximaler Spannungsabfall beim Einschalten		0,9 V DC (max.)	Ausgang	
Ansprechzeit	AUS -> EIN	Kleiner 2 ms (Hardware)	→(0 V)	
	EIN -> AUS	Kleiner 2 ms (Hardware) bei Widerstandslast		
Sicherung		3,2 A (in jeder gemeinsamen Bezugs- punktleitung)		
Gemeinsamer Bezugspunkt		Jeweils 4 Kanäle besitzen einen ge- meinsamen Bezugspunkt.	-	
Leitungsanschluss		Über Steckverbindung		
Externe	Spannung	12 V DC/24 V DC (10,2-30 V DC)		
Spannungs- versorgung	Strom	60 mA (max. 24 V DC für jede ge- meinsame Bezugspunktleitung)	R000502E	

Tab. 4-41: Technische Daten der Ausgangsschaltkreise

Dia	Aderfarbe	Funktion		
Pin- Nr.		Allgemeine Verwendung	Spezial-Versorgungsspannung / Bezugspunkt	
1	Weiß		FG	
2	Braun		0 V für Pins 4–7	
3	Grün		+12 V/+24 V für Pins 4-7	
4	Gelb	Ausgang 32		
5	Grau	Ausgang 33		
6	Rosa	Ausgang 34		
7	Blau	Ausgang 35		
8	Rot		0 V für Pins 10–13	
9	Schwarz		+12 V/+24 V für Pins 10-13	
10	Violett	Ausgang 40		
11	Grau-rosa	Ausgang 41		
12	Rot-blau	Ausgang 42		
13	Weiß-grün	Ausgang 43		
14	Braun-grün		COM0: Bezugspunkt für Pins 15–22	
15	Weiß-gelb	Eingang 32		
16	Gelb-braun	Eingang 33		
17	Weiß-grau	Eingang 34		
18	Grau-braun	Eingang 35		
19	Weiß-rosa	Eingang 36		
20	Rosa-braun	Eingang 37		
21	Weiß-blau	Eingang 38		
22	Braun-blau	Eingang 39		
23	Weiß-rot			
24	Braun-rot			
25	Weiß-schwarz			
26	Braun-schwarz		FG	
27	Grau-grün		0 V für Pins 29–32	
28	Gelb-grau		+12 V/+24 V für Pins 29-32	
29	Rosa-grün	Ausgang 36		
30	Gelb-rosa	Ausgang 37		
31	Grün-blau	Ausgang 38		
32	Gelb-blau	Ausgang 39		
33	Grün-rot		0 V für Pins 35–38	
34	Gelb-rot		+12 V/+24 V für Pins 35-38	
35	Grün-schwarz	Ausgang 44		
36	Gelb-schwarz	Ausgang 45		
37	Grau-blau	Ausgang 46		
38	Rosa-blau	Ausgang 47		
39	Grau-rot		COM1: Bezugspunkt für Pins 40-47	
40	Rosa-rot	Eingang 40		
41	Grau-schwarz	Eingang 41		

Anschlussbelegung der ersten parallelen Erweiterungsschnittstelle (Kabel RV-E-E/A)

 Tab. 4-42:
 Anschlussbelegung der ersten parallelen Erweiterungsschnittstelle (CN100) (1)

Din			Funktion
Nr.	Aderfarbe	Allgemeine Verwendung	Spezial-Versorgungsspannung / Bezugspunkt
42	Rosa-schwarz	Eingang 42	
43	Blau-schwarz	Eingang 43	
44	Rot-schwarz	Eingang 44	
45	Weiß-braun-schwarz	Eingang 45	
46	Gelb-grün-schwarz	Eingang 46	
47	Grau-rosa-schwarz	Eingang 47	
48	Blau-rot-schwarz		
49	Weiß-grün-schwarz		
50	Grün-braun-schwarz		

Tab. 4-42: Anschlussbelegung der ersten parallelen Erweiterungsschnittstelle (CN100) (2)

Dim		Funktion					
Nr.	Aderfarbe	Allgemeine Verwendung	Spezial-Versorgungsspannung / Bezugspunkt				
1	Weiß		FG				
2	Braun		0 V für Pins 4–7				
3	Grün		+12 V/+24 V für Pins 4–7				
4	Gelb	Ausgang 48					
5	Grau	Ausgang 49					
6	Rosa	Ausgang 50					
7	Blau	Ausgang 51					
8	Rot		0 V für Pins 10–13				
9	Schwarz		+12 V/+24 V für Pins 10–13				
10	Violett	Ausgang 56					
11	Grau-rosa	Ausgang 57					
12	Rot-blau	Ausgang 58					
13	Weiß-grün	Ausgang 59					
14	Braun-grün		COM0: Bezugspunkt für Pins 15–22				
15	Weiß-gelb	Eingang 48					
16	Gelb-braun	Eingang 49					
17	Weiß-grau	Eingang 50					
18	Grau-braun	Eingang 51					
19	Weiß-rosa	Eingang 52					
20	Rosa-braun	Eingang 53					
21	Weiß-blau	Eingang 54					
22	Braun-blau	Eingang 55					
23	Weiß-rot						
24	Braun-rot						
25	Weiß-schwarz						
26	Braun-schwarz		FG				
27	Grau-grün		0 V für Pins 29–32				
28	Gelb-grau		+12 V/+24 V für Pins 29–32				
29	Rosa-grün	Ausgang 52					

Tab. 4-43: Anschlussbelegung der ersten parallelen Erweiterungsschnittstelle (CN300) (1)

Din			Funktion		
Nr.	Aderfarbe	Allgemeine Verwendung	Spezial-Versorgungsspannung / Bezugspunkt		
30	Gelb-rosa	Ausgang 53			
31	Grün-blau	Ausgang 54			
32	Gelb-blau	Ausgang 55			
33	Grün-rot		0 V für Pins 35–38		
34	Gelb-rot		+12 V/+24 V für Pins 35–38		
35	Grün-schwarz	Ausgang 60			
36	Gelb-schwarz	Ausgang 61			
37	Grau-blau	Ausgang 62			
38	Rosa-blau	Ausgang 63			
39	Grau-rot		COM1: Bezugspunkt für Pins 40–47		
40	Rosa-rot	Eingang 56			
41	Grau-schwarz	Eingang 57			
42	Rosa-schwarz	Eingang 58			
43	Blau-schwarz	Eingang 59			
44	Rot-schwarz	Eingang 60			
45	Weiß-braun-schwarz	Eingang 61			
46	Gelb-grün-schwarz	Eingang 62			
47	Grau-rosa-schwarz	Eingang 63			
48	Blau-rot-schwarz				
49	Weiß-grün-schwarz				
50	Grün-braun-schwarz				

Tab. 4-43: Anschlussbelegung der ersten parallelen Erweiterungsschnittstelle (CN300) (2)

Abb. 4-27: Anschlussbelegung der ersten parallelen Erweiterungsschnittstelle

ACHTUNG:

Werksseitig ist die Stationsnummer auf "1" gesetzt. Stellen Sie keine Nummer zwischen 8–F ein, da dieses zu undefinierten Aktivitäten führen kann.

		Funktion					
Pin- Nr.	Aderfarbe	Allgemeine Verwendung	Spezial-Versorgungsspannung / Bezugspunkt				
1	Weiß		FG				
2	Braun		0 V für Pins 4–7				
3	Grün		+12 V/+24 V für Pins 4–7				
4	Gelb	Ausgang 64					
5	Grau	Ausgang 65					
6	Rosa	Ausgang 66					
7	Blau	Ausgang 67					
8	Rot		0 V für Pins 10–13				
9	Schwarz		+12 V/+24 V für Pins 10–13				
10	Violett	Ausgang 72					
11	Grau-rosa	Ausgang 73					
12	Rot-blau	Ausgang 74					
13	Weiß-grün	Ausgang 75					
14	Braun-grün		COM0: Bezugspunkt für Pins 15–22				
15	Weiß-gelb	Eingang 64					
16	Gelb-braun	Eingang 65					
17	Weiß-grau	Eingang 66					
18	Grau-braun	Eingang 67					
19	Weiß-rosa	Eingang 68					
20	Rosa-braun	Eingang 69					
21	Weiß-blau	Eingang 70					
22	Braun-blau	Eingang 71					
23	Weiß-rot						
24	Braun-rot						
25	Weiß-schwarz						
26	Braun-schwarz		FG				
27	Grau-grün		0 V für Pins 29–32				
28	Gelb-grau		+12 V/+24 V für Pins 29–32				
29	Rosa-grün	Ausgang 68					
30	Gelb-rosa	Ausgang 69					
31	Grün-blau	Ausgang 70					
32	Gelb-blau	Ausgang 71					
33	Grün-rot		0 V für Pins 35–38				
34	Gelb-rot		+12 V/+24 V für Pins 35–38				
35	Grün-schwarz	Ausgang 76					
36	Gelb-schwarz	Ausgang 77					
37	Grau-blau	Ausgang 78					
38	Rosa-blau	Ausgang 79					
39	Grau-rot		COM1: Bezugspunkt für Pins 40-47				
40	Rosa-rot	Eingang 72					
41	Grau-schwarz	Eingang 73					
42	Rosa-schwarz	Eingang 74					

Anschlussbelegung der zweiten parallelen Erweiterungsschnittstelle (Kabel RV-E-E/A)

Tab. 4-44: Anschlussbelegung der zweiten parallelen Erweiterungsschnittstelle (CN100) (1)

Din		Funktion						
Nr.	Aderfarbe	Allgemeine Verwendung	Spezial-Versorgungsspannung / Bezugspunkt					
43	Blau-schwarz	Eingang 75						
44	Rot-schwarz	Eingang 76						
45	Weiß-braun-schwarz	Eingang 77						
46	Gelb-grün-schwarz	Eingang 78						
47	Grau-rosa-schwarz	Eingang 79						
48	Blau-rot-schwarz							
49	Weiß-grün-schwarz							
50	Grün-braun-schwarz							

Tab. 4-44: Anschlussbelegung der zweiten parallelen Erweiterungsschnittstelle (CN100) (2)

Dim		Funktion					
Nr.	Aderfarbe	Allgemeine Verwendung	Spezial-Versorgungsspannung / Bezugspunkt				
1	Weiß		FG				
2	Braun		0 V für Pins 4–7				
3	Grün		+12 V/+24 V für Pins 4–7				
4	Gelb	Ausgang 80					
5	Grau	Ausgang 81					
6	Rosa	Ausgang 82					
7	Blau	Ausgang 83					
8	Rot		0 V für Pins 10–13				
9	Schwarz		+12 V/+24 V für Pins 10–13				
10	Violett	Ausgang 88					
11	Grau-rosa	Ausgang 89					
12	Rot-blau	Ausgang 90					
13	Weiß-grün	Ausgang 91					
14	Braun-grün		COM0: Bezugspunkt für Pins 15–22				
15	Weiß-gelb	Eingang 80					
16	Gelb-braun	Eingang 81					
17	Weiß-grau	Eingang 82					
18	Grau-braun	Eingang 83					
19	Weiß-rosa	Eingang 84					
20	Rosa-braun	Eingang 85					
21	Weiß-blau	Eingang 86					
22	Braun-blau	Eingang 87					
23	Weiß-rot						
24	Braun-rot						
25	Weiß-schwarz						
26	Braun-schwarz		FG				
27	Grau-grün		0 V für Pins 29–32				
28	Gelb-grau		+12 V/+24 V für Pins 29–32				
29	Rosa-grün	Ausgang 84					
30	Gelb-rosa	Ausgang 85					

Tab. 4-45: Anschlussbelegung der zweiten parallelen Erweiterungsschnittstelle (CN300) (1)

Din		Funktion					
Nr.	Aderfarbe	Allgemeine Verwendung	Spezial-Versorgungsspannung / Bezugspunkt				
31	Grün-blau	Ausgang 86					
32	Gelb-blau	Ausgang 87					
33	Grün-rot		0 V für Pins 35–38				
34	Gelb-rot		+12 V/+24 V für Pins 35–38				
35	Grün-schwarz	Ausgang 92					
36	Gelb-schwarz	Ausgang 93					
37	Grau-blau	Ausgang 94					
38	Rosa-blau	Ausgang 95					
39	Grau-rot		COM1: Bezugspunkt für Pins 40–47				
40	Rosa-rot	Eingang 88					
41	Grau-schwarz	Eingang 89					
42	Rosa-schwarz	Eingang 90					
43	Blau-schwarz	Eingang 91					
44	Rot-schwarz	Eingang 92					
45	Weiß-braun-schwarz	Eingang 93					
46	Gelb-grün-schwarz	Eingang 94					
47	Grau-rosa-schwarz	Eingang 95					
48	Blau-rot-schwarz						
49	Weiß-grün-schwarz						
50	Grün-braun-schwarz						

Tab. 4-46: Anschlussbelegung der zweiten parallelen Erweiterungsschnittstelle (CN300) (2)

Abb. 4-28: Anschlussbelegung der zweiten parallelen Erweiterungsschnittstelle

ACHTUNG:

Werksseitig ist die Stationsnummer auf "1" gesetzt. Stellen Sie keine Nummer zwischen 8–F ein, da dieses zu undefinierten Aktivitäten führen kann.

4.4.14 Anschlusskabel für externe Ein-/Ausgangsmodule

Bestellangaben

Typ.-Nr.: RV-E-E/A

Beschreibung

Mit diesem Anschlusskabel können Peripheriegeräte an die parallele Ein-/Ausgangsschnittstelle angeschlossen werden. An einem Ende ist das Kabel mit einem entsprechenden Anschlussstecker für die parallele Schnittstelle ausgerüstet. Das andere Ende zum Anschluss an die Peripheriegeräte ist nicht konfektioniert.

Lieferumfang

Anzahl	Bezeichnung	Тур	Bemerkung
1	Externes Ein-/Ausgangskabel	RV-E-E/A	5 m, 15 m lang

Tab. 4-47: Übersicht des Lieferumfangs

Technische Daten

Merkmal	Daten
Anzahl der Adern	50
Aderquerschnitt	0,18 mm ²
Gesamtlänge	5 m, 15 m

Tab. 4-48: Technische Daten

Pin-Belegung des Anschlusssteckers

Pin- Nr.	Aderfarbe	Pin- Nr.	Aderfarbe	Pin- Nr.	Aderfarbe	Pin- Nr.	Aderfarbe	Pin- Nr.	Aderfarbe
1	Weiß	11	Grau-rosa	21	Weiß-blau	31	Grün-blau	41	Grau-schwarz
2	Braun	12	Rot-blau	22	Braun-blau	32	Gelb-blau	42	Rosa-schwarz
3	Grün	13	Weiß-grün	23	Weiß-rot	33	Grün-rot	43	Blau-schwarz
4	Gelb	14	Braun-grün	24	Braun-rot	34	Gelb-rot	44	Rot-schwarz
5	Grau	15	Weiß-gelb	25	Weiß-schwarz	35	Grün-schwarz	45	Weiß-braun- schwarz
6	Rosa	16	Gelb-braun	26	Braun-schwarz	36	Gelb-schwarz	46	Gelb-grün- schwarz
7	Blau	17	Weiß-grau	27	Grau-grün	37	Grau-blau	47	Grau-rosa- schwarz
8	Rot	18	Grau-braun	28	Gelb-grau	38	Rosa-blau	48	Blau-rot- schwarz
9	Schwarz	19	Weiß-rosa	29	Rosa-grün	39	Grau-rot	49	Weiß-grün- schwarz
10	Violett	20	Rosa-braun	30	Gelb-rosa	40	Rosa-rot	50	Grün-braun- schwarz

Tab. 4-49: Übersicht der Pin-Nummern mit zugehöriger Aderfarbe

4.4.15 Anschlusskabel für Personalcomputer

Bestellangaben

TypNr.:	RV-CAB2
TypNr.:	RV-CAB4

Beschreibung

Mit dem Anschlusskabel kann eine RS232C-Verbindung zwischen dem Steuergerät und einem Personalcomputer hergestellt werden.

Lieferumfang

Anzahl	Bezeichnung	Тур	Bemerkung
1	Anschlusskabel für Personalcomputer 25 / 25 Pin	RV-CAB2	3 m lang
1	Anschlusskabel für Personalcomputer 25 / 9 Pin	RV-CAB4	3 m lang

Tab. 4-50: Übersicht des Lieferumfangs

Verbindung

Abb. 4-29: Signalbelegung des Anschlusskabels RV-CAB2

Abb. 4-30: Signalbelegung des Anschlusskabels RV-CAB4
4.5 Sicherheitsschaltungen

4.5.1 Selbstdiagnosefunktion

Die Selbstdiagnosefunktionen der Roboter RV-2AJ und RV-1A sind in Tab. 4-51 zusammengestellt.

Nr.	Funktion	Bedeutung		Bemerkung
1	Überlastschutz	Überwacht, ob als eine vorge	der Motornennstrom länger gebene Zeit ansteht	Der Antrieb wird abgebremst, der Roboter hält an und signalisiert
2	Überstromerkennung	Überwacht, ob einen Antriebs	die Strombegrenzung für motor angesprochen hat	einen Fehler/Alarm.
3	Encoder-Diagnose	Überwacht das Encoder	s Anschlusskabel zum	
4	Erkennung bei Abweichungs- überschreitung	Überwacht, ob die aktuelle Position von der Sollposition abweicht und der Roboter zu viele Impulse empfangen hat		
5	Überwachung der Versorgungsspannung	Überwacht die Netzversorgung auf Unterspannung		
6	Erkennung von CPU-Fehlfunktionen	Überwachung	der CPU auf Fehlfunktionen	-
		Software- Grenzwerte	Begrenzung der Roboter- bewegung über Software- Endschalter	
7	Überfahrschutz	Mechanische Anschläge	Die mechanischen An- schläge befinden sich außerhalb der Software-Endschalter.	Der Roboter stoppt, der Servo- antrieb wird unterbrochen und gleichzeitig werden alle Bremsen aktiviert.

Tab. 4-51: Funktionen zur Selbstdiagnose

Stopp- Funktion	Bedienfeld	Teaching Box	Externer Eingang	Bedeutung
NOT-HALT	٠	•	•	"NOT-HALT" ist die höchstwertige HALT-Funktion des Robotersystems. Die Versorgung der Servoantriebe wird unterbrochen und gleichzeitig werden alle Bremsen akti- viert. Nach einer Quittierung des Alarms durch den Be- diener und Ausführung des Befehls "Servo EIN" wird die Servoversorgung wieder zugeschaltet.
Stopp	٠	•	•	"Stopp" ist die normale HALT-Funktion des Roboter- systems. Die Versorgung der Servoantriebe wird nicht unterbrochen. Diese Funktion eignet sich für den Einsatz in Verbindung mit einer Kollisionserkennung.

Tab. 4-52: Stoppfunktionen

I/O	Signal	Befehl	Funktion	Anwendung
Eingang	Externer NOT-HALT-Schalter	(Eingangs- signal)	Stoppt den Roboter unmittelbar und schaltet die Servoversorgung aus	Externer NOT-HALT-Schalter, Türschalter, schwerer Anlagenfehler
	Stopp	STOP	Stoppt den Roboter unmittelbar und schaltet die Servoversorgung nicht aus	Peripheriefehler ohne Servoversorgung auszu- schalten
	Servo Aus	SRVOFF	Unterbricht die Servoversorgung	Peripheriefehler bremst den Roboter ab. Die Servoversor- gung wird nicht ausgeschaltet
	Automatikbetrieb freigegeben	AUTOENA	Sperrt Automatikbetrieb	Sicherheits-Türöffnerkontakt
usgang	Servo ist EIN	SRVON	Aktiv, wenn die Servo- versorgung eingeschaltet ist	Statusanzeige der Servoan- triebe
	Stopp ist aktiv	STOP	Aktiv, wenn der Roboter im Stoppzustand steht	Statusanzeige für den Stopp- zustand des Roboters
	Alarm ist aktiv	ERRRESET	Aktiv, wenn der Roboter im Alarmzustand steht	Statusanzeige für den Alarm- zustand des Roboters

Tab. 4-53: Externe Ein-/Ausgänge für Signale und Kontrolle des Robotersystems

ACHTUNG:

Der externe NOT-HALT-Schalter muss als potentialfreier Drucktaster (Öffner) mit Verriegelungsfunktion ausgeführt sein! Wenn Sie den Sicherheitskreis unterbrechen, ist der Roboter inaktiv.

4.6 **Programmierbefehle und Parameter**

Als Programmiersprache können Sie entweder MELFA-BASIC IV oder MOVEMASTER COMMAND verwenden. Um die Funktionalität des Steuergerätes in vollem Umfang zu nutzen, sollten Sie die MELFA-BASIC-IV-Befehle verwenden.

4.6.1 Übersicht der MELFA-BASIC-IV-Befehle

Тур	Gruppe	Funktion	Eingabeformat (Beispiel)
Steuerbefehle für Positionen/	Gelenk-Interpolation	Bewegung des Roboters mit Gelenk-Interpolation	MOV P1
Aktionen	Linear-Interpolation	Bewegung des Roboters mit Linear-Interpolation	MVS P1
	Kreis-Interpolation	Bewegung des Roboters mit 3D-Kreis-Interpolation	MVC P1,P2,P3
		Bewegung des Roboters mit 3D-Kreis-Interpolation	MVR P1,P2,P3
		Bewegung des Roboters mit 3D-Kreis-Interpolation	MVR2 P1,P9,P3
		Bewegung des Roboters mit 3D-Kreis-Interpolation	MVR3 P1,P9,P3
	Geschwindigkeits- festlegung	Legt die Geschwindigkeitsübersteuerung fest	OVRD 100
		Legt die Arbeitsgeschwindigkeit für Gelenk-Interpolation fest	JOVRD 100
		Legt die Geschwindigkeit für Linear- und Kreis-Interpolation fest	SPD 123.5
		Legt die Beschleunigungs-/Bremszeit fest	ACCEL 50,80
		Optimale Beschleunigung/Bremsung	OADL 1,5,20
		Hand- und Betriebseinstellungen für die festgelegte Beschleunigungs-/Bremszeit	LOADSET 1,1
	Aktion	Anfügen einer unbedingten Anweisung	WTH
		Anfügen einer bedingten Anweisung	WTHIF
		Steuerung für eine kontinuierliche gleichmäßige Bewegung	CNT 1,100,200
		Legt eine Feinpositionierung fest	FINE 200
		Abschalten der Servoversorgung für alle Achsen	SERVO OFF
		Legt die Drehmomentbegrenzung einer Achse fest	TORQ 4,60
	Positionierung	Legt die Basis-Transformations- koordinaten fest	BASE P1
		Legt die Werkzeug-Konvertierungsdaten fest	TOOL P1
	Weichheitsgrad	Achsenweichheit aktivieren	CMP POS 00000011
		Achsenweichheit deaktivieren	CMP OFF
		Achsenweichheit einstellen	CMPG 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0
	Palettierung	Definiert eine Palette	DEF PLT 1,P1,P2,P3,P4,5,3,1
		Berechnet die Koordinaten für eine Palette	PLT 1,M1

Tab. 4-54: Übersicht der MELFA-BASIC-IV-Befehle (1)

Тур	Gruppe	Funktion	Eingabeformat (Beispiel)
Befehle zur Programm-	Verzweigung	Sprung zu einer Programmzeile oder Marke	GOTO 120
steuerung		WENN DANN SONST-Schleife	IF IN1=1 THEN GOTO 100 ELSE GOTO 20
		Legt eine Programmschleife fest	FOR M1=1 TO 10
			NEXT M1
		Legt eine Programmschleife fest	WHILE M1<10 : WEND
	Verzweigung	Legt eine Programmverzweigung fest	ON M1 GOTO 100,200,300
		Ruft einen Programmblock auf	SELECT COUNT CASE 1
			CASE 2
			END SELECT
		Programmsteuerung springt in die nächste Zeile.	SKIP
	Unterprogramm	Sprung zu einem Unterprogramm	GOSUB 200
		Rücksprung zum Hauptprogramm	RETURN
		Ruft ein Programm auf	CALLP "P10",M1,P1
		Definiert Parameter	FPRM M10,P10
		Sprung zu einem Unterprogramm	ON M1 GOSUB 100,200,300
	Interrupt	Definiert einen Interrupt-Prozess	DEF ACT 1 IN1=1 GOTO 100
		Gibt ein Interrupt frei	ACT 1=1
		Sprung zu einem Unterprogramm	ON COM(1) GOSUB 100
		Kommunikations-Interrupt freigeben	COM(1) ON
		Kommunikations-Interrupt sperren	COM(1) OFF
		Kommunikations-Interrupt stoppen	COM(1) STOP
	Voreinlesen	Voreinlesen stoppen	SYNC
	Wartezeit	Legt eine Verzögerungszeit oder eine Impulsdauer fest	DLY 0.5
		Programmablauf unterbrechen bis Bedingung erfüllt	WAIT M_IN(1)=1
	Stopp	Stoppt die Programmausführung	HLT
		Erzeugt eine Fehlermeldung Es kann definiert werden, ob die Programmausführung unterbrochen oder weitergeführt und ob die Servoversorgung abgeschaltet wird.	ERROR 9000
	Ende	Beendet ein Programm	END
Befehle zur	Hand öffnen	Öffnet die gewählte Hand	HOPEN
Hand- steuerung	Hand schließen	Schließt die gewählte Hand	HCLOSE
Steuer-	Zuweisung	Definiert eine Variable	DEF IO PORT1=BIT,0
befehle für Ein/Ausgänge	Eingang	Liest Daten ein	M1=IN1
	Ausgang	Gibt Daten aus	OUT 1=0

 Tab. 4-54:
 Übersicht der MELFA-BASIC-IV-Befehle (2)

Тур	Gruppe	Funktion	Eingabeformat (Beispiel)
Befehle zur	Roboterzuordnung	Auswahl des Roboters	GETM 1
parallelen Programm-		Auswahl des Roboters aufheben	RELM 1
ausführung	Auswahl	Zuordnung von Programm und Anwendung	XLOAD 2,"P102"
	Start/Stopp	Ausgewähltes Programm starten	XRUN 3,"100",0
		Ausgewähltes Programm stoppen	XSTP 3
		Rücksprung in die Startzeile des Pro- gramms und Freigabe der Programmwahl	XRST 3
Spezielle	Definition	Deklariert eine arithmetische Variable	DEF INTE WORK
Befehle		Deklariert eine Zeichenkettenvariable	DEF CHAR MESSAGE
		Legt die Anzahl der Elemente einer Feldvariablen fest	DIM PDATA(2,3)
		Deklariert eine Gelenkvariable	DEF JNT SAFE
		Deklariert eine Positionsvariable	DEF POS WORKSET
		Deklariert eine Funktion	DEF FNMAVE(A,B)=A+B
	Löschen	Löscht die allgemeinen Ausgangssignale, lokale und globale Variablen usw.	CLR 1
	Datei	Datei öffnen	OPEN "COM"1:" AS #1
		Datei schließen	CLOSE #1
		Überträgt Daten in eine Variable	INPUT #1,M1
		Gibt Daten aus	PRINT #1,M1
	Kommentar	Schreiben eines Kommentares	REM "ABC"
	Marke	Definiert eine Marke	*SUB1

Tab. 4-54: Übersicht der MELFA-BASIC-IV-Befehle (3)

4.6.2	Übersicht der MOVEMASTER-COMMAND-Befehle
4.6.2	Ubersicht der MOVEMASTER-COMMAND-Beteni

Тур	Gruppe	Funktion	Eingabeformat (Beispiel)
Steuerbefehle für Positionen/	Gelenk-Interpolation	Bewegung des Roboterarms mit Gelenk-Interpolation	MO 1
Aktionen		Bewegt den Roboterarm zu einer angegebenen Koordinatenposition	MP 100, 200, 125,3, 0, 90, 0
		Bewegung mit relativer Koordinatenaddition	MA 1, 2
		Bewegt die Gelenke um einen definierten Winkel	MJ 10, 20, 0, 0, 0, 0
		Bewegt eine definierte Achse des Roboterarms um einen definierten Winkel	DJ 1, 15
		Bewegt den Roboterarm über eine definierte Distanz mit Gelenk- Interpolation	DW 100, 80, 0
		Bewegt den Roboterarm zur Position mit der nächsthöheren Nummer	IP
		Bewegt den Roboterarm zur Position mit der nächstniedrigen Nummer	DP
		Bewegung des Roboterarms in Werk- zeugrichtung mit Gelenk-Interpolation	MT 1, –50
		Bewegt den Roboterarm in die Grundposition (Nullposition)	NT
		Bewegt den Roboterarm in die benutzerdefinierte Grundposition	OG
	Linear-Interpolation	Bewegung des Roboterarms mit Linear-Interpolation	MS 1
		Bewegt den Roboterarm über eine definierte Distanz mit Linear- Interpolation	DS 10, 20, 0
		Fortlaufende Bewegung des Roboter- arms mit Linear-Interpolation	MC 10, 20
		Bewegung des Roboterarms in Werk- zeugrichtung mit Linear-Interpolation	MTS 1, -50
	Kreis-Interpolation	Bewegung des Roboterarms mit Kreis-Interpolation	MR 1, 2, 3
		Fortlaufende Bewegung des Roboter- arms mit Kreis-Interpolation	MRA 4
	Geschwindigkeits- festlegung	Legt die Geschwindigkeits- übersteuerung fest	OVR 100
		Legt die Arbeitsgeschwindigkeit und den Beschleunigungs-/Bremswert fest	SP 25, H
		Legt die Geschwindigkeit, die Zeit- konstante, den Beschleunigungs-/ Bremswert und den CNT-Wert für Linear- und Kreis-Interpolation fest	SD 123,5, 50, 50, 0

Tab. 4-55: Übersicht der MOVEMASTER-COMMAND-Befehle (1)

Тур	Gruppe	Funktion	Eingabeformat (Beispiel)
Steuerbefehle	Positionierung	Legt die Werkzeuglänge fest	TL 128
für Positionen/ Aktionen		Legt die Werkzeug-Matrix fest	TLM 0, 0, 128, 0, 0, 0
		Legt die Haltegenauigkeit fest	PW 10
		Addiert ±360° zur aktuellen Position der Handgelenkdrehachse und überschreibt die aktuelle Gelenkposition	JRC +1
		Übernahme der aktuellen Position	HE 1
		Übernahme der aktuellen Position als Grundposition (Nullposition)	НО
		Definiert eine Position über die Koordinaten (x, y, z, a, b, c)	PD 1, 100, 200, 300, 0, 90, 0
		Löscht die Position zwischen zwei angegebenen Positionen	PC 1, 20
		Ändert den Wert für die Haltelage	CF 1, R, A, F
	Palettierung	Definiert eine Palette	PA 1, 5, 3
		Berechnet die Gitterposition einer Palette	PT 1
	Verzweigung	Sprung zu einer Programmzeile	GT 120
		Sprung zu einer Programmzeile, wenn interner und angegebener Wert/String übereinstimmen	EQ 20, 120 EQ "OK", 120
		Sprung zu einer Programmzeile, wenn interner und angegebener Wert/String nicht übereinstimmen	NE 20, 120 NE "NG", 120
		Sprung zu einer Programmzeile, wenn der interne Wert/String größer als der angegebene Wert/String ist	LG 20, 120 LG "NG", 120
		Sprung zu einer Programmzeile, wenn der interne Wert/String kleiner als der angegebene Wert/String ist	SM 20, 120 SM "NG", 120
		Sprung zu einer Programmzeile durch Eingangsbitzustand	TB +5, 100
		Sprung zu einer Programmzeile durch direktes Lesen eines Eingangs	TBD +5, 100
		Beginn einer Programmschleife	RC 8
		Legt das Ende einer Programmschleife fest	NX
	Unterprogramm	Ausführung des Unterprogramms Angegeben wird die Programmzeile und das Programm	GS 3, 10
		Rücksprung zum Hauptprogramm Die Programmzeile in die zurückge- sprungen wird, kann angegeben werden.	RT RT 200
Befehle zur	Interrupt	Legt einen Interrupt-Eingang fest	EA +16, 100, 1
Programm- steuerung		Sperrt die Interrupt-Möglichkeit	DA 16
	Wartezeit	Stoppt die Ausführung für die ange- gebene Zeit (Einheit: 0,1 s)	TI 50
	Auswahl	Programm auswählen	N 1
	Start	Führt das Programm zwischen zwei angegebenen Programmzeilen aus	RN 10, 50
	Stopp	Hält die Programmausführung an	HLT
	Ende	Beendet ein Programm	ED

Tab. 4-55: Übersicht der MOVEMASTER-COMMAND-Befehle (2)

Тур	Gruppe	Funktion	Eingabeformat (Beispiel)
Befehle zur	Hand öffnen	Öffnet die gewählte Hand	GO
Hand- steuerung	Hand schließen	Schließt die gewählte Hand	GC
	Einstellung	Legt die Greifkraft der motorbetriebenen Hand und die Zeit zum Öffnen und Schließen der Hand fest.	GP 40, 30, 50
		Legt den Zustand der Hand fest	GF 1
Steuerbefehle	Eingang	Liest Daten direkt ein	ID
für Ein-/ Ausgänge	Ausgang	Gibt Daten direkt über die Ausgabe- schnittstelle aus	OD 20
		Gibt einen Zählerwert über die Ausgabeschnittstelle aus	OC 1
		Schaltet einen Ausgang	OB +16
Operations- und	Addition	Addiert einen Wert zum Wert des internen Registers.	ADD 10
befehle		Addiert den Wert "1" zum Wert eines festgelegten Zählers	IC 5
		Addiert zwei Positionskoordinatenwerte	SF 1, 2
	Subtraktion	Subtrahiert einen Wert vom Wert des internen Registers	SUB 10
		Subtrahiert den Wert "1" zum Wert ei- nes festgelegten Zählers	DC 5
	Multiplikation	Multipliziert den Wert des internen Registers mit einem Wert	MUL 2
	Division	Dividiert den Wert des internen Registers durch einen Wert	DIV 10
	AND	UND-Verknüpfung des Registerwertes mit einem angegebenen Wert	AN 7
	OR	ODER-Verknüpfung des Registerwertes mit einem angegebenen Wert	OR 3
	XOR	Exklusiv-ODER-Verknüpfung des Registerwertes mit einem angegebenen Wert	XO 2
	Substitution	Angegebenen Wert in einen Zähler laden	SC 1, 10 SC \$1, "OK"
		Kopiert eine Position	PL 1, 2
		Registerinhalt in einen Zähler laden	CL 1
		Vergleicht den Zählerwert mit dem Registerwert	CP 1
	Austausch	Tauscht Positionen aus	PX 1, 2

 Tab. 4-55:
 Übersicht der MOVEMASTER-COMMAND-Befehle (3)

Тур	Typ Gruppe Funktion		Eingabeformat (Beispiel)
Spezielle Befehle	Lesebefehle für RS232C-	Liest ausgewählte Programminforma- tionen über die RS232C-Schnittstelle	QN 1
	Schnittstelle	Liest eine Programmzeile über die RS232C-Schnittstelle	LR 10
		Liest einen Programmschritt über die RS232C-Schnittstelle	STR 10
		Liest eine Position über die RS232C-Schnittstelle	PR 1
		Liest einen Zählerwert über die RS232C-Schnittstelle	CR 1
		Liest das Handeingangssignal, den internen Registerwert und die 16-Bit- Datenbreite der angegebenen Ausgangssignalbits	DR 16
		Liest die aktuelle Fehlernummer über die RS232C-Schnittstelle	ER 10
		Liest die aktuellen Positionsdaten über die RS232C-Schnittstelle	WH
		Liest die aktuelle Werkzeuglänge über die RS232C-Schnittstelle	WT
		Liest die aktuelle Werkzeugmatrix über die RS232C-Schnittstelle	WTM
	Löschen	Liest die Software-Version des Systems über die RS232C-Schnittstelle	VR
		Liest einen Parameterwert über die RS232C-Schnittstelle	PMR "HANDINIT"
		Löscht eine Programmzeile	DL 10, 90
		Löscht Programme und Positionsdaten	NW
	Datei	Öffnet eine Datei	OPEN 1, 1
		Liest Daten aus einer Datei	INP 1, 2, 0
		Überträgt Daten in eine Datei	PRN 2
		Parameterwerte schreiben	PMW 1, 0, 1, 0, 1, 0, 1, 0
	Zurücksetzen	Zurücksetzen von Fehlermeldungen oder Programmzeilennummern	RS
	Kommentar	Schreiben eines Kommentars	1

Tab. 4-55: Übersicht der MOVEMASTER-COMMAND-Befehle (4)

4.6.3 Übersicht der Parameter

Parameter		Beschreibung	
Standardwerkzeug- koordinaten	MEXTL	Legt den Werkzeugmittelpunkt TCP fest Einheit: mm oder Grad	
Standardbasis- koordinaten	MEXBS	Legt das Roboterkoordinatensystem in Beziehung zum Weltko- ordinatensystem fest Einheit: mm oder Grad	
Verfahrweggrenzen für XYZ-Bewegungen	MEPAR	Legt die Verfahrweggrenzen für das XYZ-Koordinatensystem fest	
Verfahrweggrenzen für Gelenkbewegungen	MEJAR	Legt die Verfahrweggrenzen für jedes einzelne Gelenk fest	
Verfahrwegbegrenzungsebene		Die Verfahrwegsgrenzen werden über eine Ebene definiert. Die Ebene wird über die Koordinaten X1, Y1, Z1 bis X3, Y3, Z3 festgelegt. Bei Überschreitung dieser Bereichsgrenzen erfolgt eine Fehlermeldung. Folgende 3 Parametertypen können ver- wendet werden:	
	SFC1P : SFC8P	Über SFC1P bis SFC8P können 8 Begrenzungsebenen defi- niert werden. Setzen Sie die dazu nötigen 9 Elemente in fol- gender Reihenfolge: X1, Y1, Z1, X2, Y2, Z2, X3, Y3, Z3.	
	SFC1ME :	Zuweisung der Roboter 1 bis 8 an die Begrenzungsebenen	
	SEC1AT	Fraigaba dar 9 Ragranzungsabanan	
	SFC8AT	freigegeben/gesperrt = 1/0	
Benutzerdefinierte Verfahrwegsgrenze		Über zwei Punkte wird ein kubischer Bereich festgelegt. Ein Eindringen in diesen Bereich wird als Verfahrwegüber- schreitung definiert und ein korrespondierendes Signal kann geschaltet werden. Es können 8 Bereiche definiert werden.	
		Festlegung des ersten Bereichspunktes; setzen Sie die 8 Elemente in folgender Reihenfolge: X, Y, Z, A, B, C, L1, L2 (L1 und L2 definieren die Zusatzachsen).	
	AREA1P2 : AREA8P2	Festlegung des zweiten Bereichspunktes; setzen Sie die 8 Elemente in folgender Reihenfolge: X, Y, Z, A, B, C, L1, L2 (L1 und L2 definieren die Zusatzachsen).	
	AREA1PME	Zuweisung der Roboter 1 bis 8 an die Begrenzungsbereiche	
		Fastlagung dar Parajabanröfmathada:	
	AREA8AT	Gesperrt/Zone/Überschreitung = 0/1/2 Zone: Das Signal USRAREA wird eingeschaltet. Überschreitung: Es erfolgt eine Fehlermeldung.	
Automatische Rückkehr nach einem Interrupt	REPATH	Bewirkt den Neustart des Programms nach Auftreten eines Interrupts von der Interrupt-Position aus	
Summer EIN/AUS	Buzzer ON/OFF	Schaltet den Summer EIN/AUS	
JOG-Einstellung	JOGJSP	Festlegung der Geschwindigkeit für den Gelenk-JOG- und für den Schrittbetrieb (Einstellung der Werte H/L, maximaler Übersteuerungswert)	
	JOGPSP	Festlegung der Geschwindigkeit für den Linear-JOG- und für den Schrittbetrieb (Einstellung der Werte H/L, maximaler Über- steuerungswert)	
Geschwindigkeits- begrenzung für den JOG-Betrieb	JOGSPMX	Geschwindigkeitsbegrenzung im TEACH-Modus (max. 250 mm/s)	
Handausführung	HANDTYPE	Festlegung der Handausführung (Einfach-/Doppelmagnetspule = S/D) und Signalnummer Geben Sie erst den Handtyp, dann die Signalnummer an: z. B. D900.	

Tab. 4-56: Übersicht der Parameter (1)	
--------------------------------------	----	--

Parameter		Beschreibung
Kontakttyp für externen STOP-Taster auswählen	INB	Definition des Stopp-Eingangs als Öffner oder Schließer
Benutzerdefinierter Nullpunkt	USERORG	Festlegung des benutzerdefinierten Nullpunkts
Programmwahl	SLOTON	Auswahl des Programmes, das der Anwendung bei Initialisie- rung zugewiesen wurde Der Status "Keine Auswahl" wird gesetzt, wenn keine Angabe erfolgt.
Kommunikations-	CBAU232	Festlegung der Übertragungsrate
einstellungen	CLEN232	Festlegung der Datenlänge
	CPRTY232	Festlegung der Parität
	CSTOP232	Festlegung des Stopp-Bits
	CTERM232	Festlegung des Endezeichens
Programmplatzliste	SLT1 : SLT32	Festlegung der Einstellungen (Programmname, Programmtyp, Priorität usw.) jedes Programms bei der Initialisierung
Anzahl der Programme	TASKMAX	Festlegung der maximalen Anzahl der Programme für eine parallele Ausführung (Multitasking)

Tab. 4-56: Übersicht der Parameter (2)

5 Wartung

Das folgende Kapitel enthält alle Informationen, um einen Betrieb des Roboters ohne Störungen zu ermöglichen. Dazu gehört auch das Austauschen der Verschleißteile.

5.1 Wartungsintervalle

Die hier beschriebenen Wartungsintervalle und Inspektionen sollten auf jeden Fall eingehalten werden. Nur so kann ein störungsfreier Betrieb des Robotersystems gewährleistet werden.

5.1.1 Wartungsplan

Die folgende Tabelle zeigt den Wartungsplan des Robotersystems. Alle 3 Monate (500 Betriebsstunden) sind zusätzliche Inspektionen notwendig.

Betriebs- stunden	Wartungsintervall					
0	Tägliche					
	Inspektion	Monatsinspektion				
		Monatsinspektion				
500		Monatsinspektion	3-Monatsinspektion			
		Monatsinspektion				
		Monatsinspektion				
1000		Monatsinspektion	3-Monatsinspektion	6-Monatsinspektion		
		Monatsinspektion				
		Monatsinspektion				
1500		Monatsinspektion	3-Monatsinspektion			
		Monatsinspektion				
		Monatsinspektion				
2000		Monatsinspektion	3-Monatsinspektion	6-Monatsinspektion	Jahresinspektion	

Tab. 5-1: Wartungsplan

5.1.2 Inspektionsintervall

1-Schichtbetrieb

8 Stunden/Tag × 20 Tage × 3 Monate = ca. 500 Stunden 10 Stunden/Tag × 20 Tage × 3 Monate = ca. 600 Stunden

2-Schichtbetrieb

16 Stunden/Tag \times 20 Tage \times 3 Monate = ca. 1000 Stunden

5.2 Inspektionen

5.2.1 Tägliche Inspektionen

Die in Tab 5-2 aufgeführten Inspektionen sind täglich durchzuführen.

Zeitpunkt	Nr.	Inspektion	Abhilfe bei Störung
Vor dem Einschalten	1	Überprüfen der Befestigungsschrauben des Roboterarms (Sichtprüfung)	Schrauben fest anziehen
	2	Überprüfen der Gehäusedeckelbefestigungen (Sichtprüfung)	Schrauben fest anziehen
	3	Überprüfen der Befestigungsschrauben der Greifhand (Sichtprüfung)	Schrauben fest anziehen
	4	Überprüfen der Netzanschlussleitung (Sichtprüfung)	Neu verbinden
	5	Überprüfen des Leistungs- und Steuerkabels (Sichtprüfung)	Neu verbinden
	6	Überprüfen der Gehäusedeckel auf Bruch (Sichtprüfung)	Defekte Abdeckungen durch Neu- teile ersetzen
	7	Überprüfen, ob Fett austritt (Sichtprüfung)	Säubern und Fett nachfüllen
	8	Überprüfen der Druckluftversorgung auf Leck, Verschmutzung und Druckbereich (Sichtprüfung)	Säubern und Schläuche wechseln
	9	Überprüfen des Verschmutzungsgrades des Filters im Steuergerät	Filter reinigen oder austauschen
Nach dem Einschalten		Überprüfen auf ungewöhnliche Bewegungen und/oder Betriebsgeräusche	Hinweise zu Fehlerursachen finden Sie in der Programmieranleitung.
Im Betrieb	1	Achten Sie auf Positionsabweichungen. Bei Änderungen überprüfen: Sockelschrauben Schrauben der Greifhand Montageschrauben der Hilfsvorrichtungen	Hinweise zu Fehlerursachen finden Sie in der Programmieranleitung.
	2	Überprüfen auf ungewöhnliche Bewegungen und/oder veränderte Betriebsgeräusche	Hinweise zu Fehlerursachen finden Sie in der Bedienungs-/ Programmieranleitung.

Tab. 5-2: Übersicht der täglichen Inspektionspunkte

5.2.2 Periodische Inspektionen

Die in der folgenden Tabelle aufgeführten Inspektionen sind periodisch durchzuführen.

Zeitpunkt	Nr.	Inspektion	Abhilfe bei Störung	
Monatlich (1)		Schrauben am Roboterarm überprüfen	Schrauben fest anziehen	
② Schrauben der Steckverbindungen und Kabel- anschlüsse überprüfen		Schrauben der Steckverbindungen und Kabel- anschlüsse überprüfen	Schrauben fest anziehen	
 Gehäusedeckel abnehmen und auf Verfärbung und Bruch überprüfen Kabel auf Beschädigungen überprüfen 		Gehäusedeckel abnehmen und auf Verfärbung und Bruch überprüfen Kabel auf Beschädigungen überprüfen	Bei starken Beschädigungen der Teile nehmen Sie bitte Kontakt mit unserer Service-Abteilung auf.	
Alle 3 Monate ① Überprüfen der Zahnriemenspannung		Überprüfen der Zahnriemenspannung	Einstellen (siehe Abs. 5.3.3)	
Alle 6 Monate		Zähne der Antriebsriemen auf Verschleiß über- prüfen	Gegebenenfalls ersetzen	
Jährlich	1	Untersetzungsgetriebe schmieren	Siehe Abs. 5.3.8	
Pufferbatterien im Roboterarm und Steuergerät austauschen		Pufferbatterien im Roboterarm und Steuergerät austauschen	Siehe Abs. 5.3.9	

Tab. 5-3: Übersicht der periodischen Inspektionspunkte

5.3 Inspektions- und Wartungsarbeiten

Im folgenden Abschnitt wird die Durchführung der periodischen Inspektions- und Wartungsarbeiten beschrieben. Die Wartungsarbeiten können auf Anforderung auch durch einen von MITSUBISHI ELECTRIC autorisierten Service durchgeführt werden.

ACHTUNG:

Demontieren Sie ausschließlich nur die Teile, die laut Wartungsanweisung zur Wartung demontiert werden müssen!

ACHTUNG:

Nach Wartungsarbeiten kann es zu einer Veränderung des mechanischen Bezugspunktes (Nullpunkt) kommen. Diese tritt besonders dann auf, wenn der Bezugspunktabgleich bei der Inbetriebnahme des Robotersystems nicht sorgfältig durchgeführt wurde.

5.3.1 Konstruktion des Roboterarms

Die folgende Abbildung zeigt den Aufbau des 5-achsigen Roboterarms:

Abb. 5-1: Aufbau des 5-achsigen Roboterarms

Die folgende Abbildung zeigt den Aufbau des 6-achsigen Roboterarms:

Abb. 5-2: Aufbau des 6-achsigen Roboterarms

• Mittelteilgelenk (J1)

Der J1-Motor ① treibt über ein Untersetzungsgetriebe ② im Sockel das Mittelteilgelenk an. Der J1-Motor ① besitzt eine elektrisch gesteuerte Bremse.

• Schultergelenk (J2)

Der J2-Motor 3 treibt über ein Untersetzungsgetriebe 5 und einen Zahnriemen 4 in der Schulter das Schultergelenk an. Der J2-Motor 3 besitzt eine elektrisch gesteuerte Bremse, um die Position nach dem Ausschalten zu halten.

• Ellbogengelenk (J3)

Der J3-Motor 6 treibt über ein Untersetzungsgetriebe 8 und einen Zahnriemen 7 im Oberarm das Ellbogengelenk an. Der J3-Motor 6 besitzt eine elektrisch gesteuerte Bremse, um die Position nach dem Ausschalten zu halten.

• Unterarmdrehgelenk (J4) (nur bei 6-achsigen Robotern vorhanden)

Der J4-Motor ② treibt über ein Untersetzungsgetriebe ① und einen Zahnriemen ① im Ellbogen das Unterarmdrehgelenk an.

• Handgelenkneigung (J5)

Der J5-Motor (2) treibt über ein Untersetzungsgetriebe (4) und einen Zahnriemen (13) im Unterarm die Handgelenkneigung an. Der J5-Motor (2) besitzt eine elektrisch gesteuerte Bremse, um die Position nach dem Ausschalten zu halten.

• Handgelenkdrehung (J6)

Der J6-Motor () treibt über ein Untersetzungsgetriebe () im Handgelenk die Handgelenkdrehung an.

5.3.2 Entfernen der Gehäuseabdeckungen

Abb. 5-3: Lage und Bezeichnung der Gehäuseabdeckungen beim 5-achsigen Roboterarm

Abb. 5-4: Lage und Bezeichnung der Gehäuseabdeckungen beim 6-achsigen Roboterarm

Für die Wartungsarbeiten sind die in Tab. 5-4 zusammengestellten Gehäuseabdeckungen zu entfernen. Die zugehörigen Montageschrauben sind in Tab. 5-5 zusammengestellt.

HINWEIS

Sollten sich Gehäuseteile schwer entfernen lassen, so kann dies an der Stellung des Roboterarms liegen. Ändern Sie die Position im Jog-Betrieb so, dass sich die Gehäuseteile leicht demontieren lassen.

Nr.	Bezeichnung	Anzahl	Bemerkung
0	Batteriefachabdeckung	1	
2	Schulterabdeckung A	1	
3	Schulterabdeckung B	1	
4	Armabdeckung 1	2	
5	Ellbogenabdeckung (links)	1	
6	Ellbogenabdeckung (rechts)	1	
7	Armabdeckung 2 für 5-achsigen Roboterarme	2	
8	Armabdeckung 2 für 6-achsigen Roboterarme	2	
9	Handgelenkabdeckung A	1	Diese Abdeckung bleibt montiert.
0	Handgelenkabdeckung B	2	Diese Abdeckungen bleiben montiert.

Tab. 5-4: Zusammenstellung der Gehäuseabdeckungen

Schraubenbezeichnung	Anzahl	Bemerkung
Innonocohokontoohrouhon M2 v 10 (vornickalt)	23	Bei 5-achsigen Roboterarmen
innensechskantschrauben wis x 10 (vernickeit)	31	Bei 6-achsigen Roboterarmen

 Tab. 5-5:
 Übersicht der Befestigungsschrauben für die Abdeckungen

ACHTUNG:

Die Handgelenkabdeckung A dient auch als Abdeckung des Encoders der J6-Achse. Diese Abdeckung darf nicht entfernt werden.

ACHTUNG:

Achten Sie darauf, dass Roboter für besondere Umgebungsbedingungen (z. B. Roboter zum Einsatz bei hoher Luftfeuchtigkeit) keine Beschädigungen der Verpackung oder der Gehäuseoberfläche aufweisen. Ein einwandfreier Einsatz kann dann nicht mehr garantiert werden. Sollten Sie Beschädigungen feststellen, kontaktieren Sie Ihren Service-Partner.

5.3.3 Wartung der Zahnriemen

Die Achsen des Roboterarms werden über Zahnriemen angetrieben. Anders als bei Ketten und Zahnrädern bedarf der Zahnriemen keiner Schmierfette und entwickelt nur geringe Betriebsgeräusche. Bei ungenügender Wartung des Zahnriemens oder falscher Zahnriemenspannung kann es zu erhöhtem Verschleiß und stärkerer Geräuschentwicklung kommen.

Um den Spannungsverlust des neuen Zahnriemens zu kompensieren, wird werksseitig der Zahnriemen vorgealtert. Die Spannung des Zahnriemens wird im Werk korrekt eingestellt.

Die Zahnriemenspannung muss regelmäßig überprüft und eingestellt werden, da während längerer Betriebsdauer eine Streckung des Zahnriemens eintritt.

Ein Austausch des Zahnriemens ist in jedem Fall notwendig, wenn

- ein Zahn ausbricht,
- der Zahnriemen aufgrund von Öl oder Schmierfett aufgequollen ist,
- die Riemenbreite sich verringert hat (halbe Zahnbreite),
- der Zahnriemen wegen zu großer Abnutzung über die Zahnriemenscheibe rutscht (Dies kann auch dann der Fall sein, wenn das Aluminiumzahnrad abgenutzt ist.)
- oder der Zahnriemen reißt.

HINWEIS

Die Abnutzung der Zahnriemen ist von der Betriebsdauer des Roboters abhängig. Wenn Sie nach 300 Betriebsstunden Abriebstaub im Gehäusedeckel finden, ist das eine normale Betriebserscheinung. Sollte nach kurzer Zeit erneut ein erhöhter Abriebstaub entstehen, so wechseln Sie den Riemen und stellen Sie die Zahnriemenspannung entsprechend ein.

5.3.4 Inspektion, Einstellung und Ersetzen des Antriebszahnriemens für die J2-Achse

Abb. 5-5: Antriebszahnriemen für die Schulterachse

Inspektion des Antriebszahnriemens

- ① Stellen Sie sicher, dass die Versorgungsspannung des Steuergerätes ausgeschaltet ist.
- 2 Entfernen Sie die Armabdeckungen 1 (links und rechts) (siehe Abb. 5-3 oder Abb. 5-4).
- ③ Überprüfen Sie den Antriebszahnriemen auf Beschädigungen und Verschleiß (Abs. 5.3.3).
- ④ Drücken Sie in der Mitte leicht auf den Zahnriemen (ca. 2 N). Der Zahnriemen muss sich ca. 1,5 mm hinunterdrücken lassen (siehe Abb. 5-9).

Einstellung der Zahnriemenspannung

- Führen Sie die im Abs. "Inspektion des Antriebszahnriemens" genannten Schritte (1) und (2) aus.
- 2 Lösen Sie die beiden Befestigungsschrauben 1 der Riemenspannrolle 3. Achten Sie darauf, dass Sie die Schrauben nicht komplett herausdrehen.
- ③ Stellen Sie die Zahnriemenspannung mit Hilfe der Riemenspannrolle ④ entsprechend den Werten aus Tab. 5-6 ein.
- Bewegen Sie die Riemenspannrolle 3 in Richtung "a", so spannt sich der Zahnriemen.
 Bewegen Sie die Riemenspannrolle 3 in Richtung "b", so entspannt sich der Zahnriemen.
- (5) Achten Sie beim Entspannen des Zahnriemens darauf, dass dieser nicht von den Zahnriemenscheiben 4 und 5 springt oder verspringt, da dies zu einer Abweichung des Nullpunkts führt.
- 6 Ziehen Sie die beiden Befestigungsschrauben 1 der Riemenspannrolle 3 nach der Einstellung wieder fest. Eine nicht richtig festgeschraubte Riemenspannrolle 3 kann sich aufgrund von Vibrationen lösen.

Antriebszahnriemen austauschen

- ① Fahren Sie die J2-Achse mit der Teaching Box in den mechanischen Endanschlag. Dazu muss die Bremse der J2-Achse gelöst werden.
- ② Fixieren Sie die Riemenspannrollen ④ und ⑤ beim Austausch des Antriebszahnriemens. Sollte sich die Position der Riemenspannrollen verändern, so muss die Nullstellung der Achse neu eingestellt werden.
- ③ Markieren Sie den Antriebszahnriemen ② und die Zahnriemenscheiben ④ und ⑤, damit die Position wiedergefunden wird.
- (4) Lösen Sie die Befestigungsschrauben (1) der Riemenspannrolle (3).
- (5) Übernehmen Sie die Markierungen von dem alten auf den neuen Antriebszahnriemen.
- 6 Tauschen Sie den alten Zahnriemen gegen den neuen aus.
- ⑦ Stellen Sie die Zahnriemenspannung wie oben beschrieben ein.
- ⑧ Überprüfen Sie, ob sich eine Änderung der Grundposition ergeben hat.
- Korrigieren Sie gegebenenfalls die Grundposition der J2-Achse durch eine erneute Einstel-lung des Bezugspunktes (Nullpunkt).

5.3.5 Inspektion, Einstellung und Ersetzen des Antriebszahnriemens für die J3-Achse

Abb. 5-6: Antriebszahnriemen für die Ellbogenachse

Inspektion des Antriebszahnriemens

- ① Stellen Sie sicher, dass die Versorgungsspannung des Steuergerätes ausgeschaltet ist.
- 2 Entfernen Sie die Armabdeckungen 1 (links und rechts) (siehe Abb. 5-3 oder Abb. 5-4).
- ③ Überprüfen Sie den Antriebszahnriemen auf Beschädigungen und Verschleiß (Abs. 5.3.3).
- (4) Drücken Sie in der Mitte leicht auf den Antriebszahnriemen (ca. 2 N). Der Zahnriemen muss sich ca. 1,6 mm hinunterdrücken lassen (siehe Abb. 5-9).

Einstellung der Zahnriemenspannung

- Führen Sie die im Abs. "Inspektion des Antriebszahnriemens" genannten Schritte (1) und (2) aus.
- 2 Lösen Sie die beiden Befestigungsschrauben 1 der Riemenspannrolle 3. Achten Sie darauf, dass Sie die Schrauben nicht komplett herausdrehen.
- ③ Stellen Sie die Zahnriemenspannung mit Hilfe der Riemenspannrolle ④ entsprechend den Werten aus Tab. 5-6 ein.
- (4) Bewegen Sie die Riemenspannrolle (3) in Richtung "a", so spannt sich der Zahnriemen. Bewegen Sie die Riemenspannrolle (3) in Richtung "b", so entspannt sich der Zahnriemen.
- (5) Achten Sie beim Entspannen des Zahnriemens darauf, dass dieser nicht von den Zahnriemenscheiben 4 und 5 springt oder verspringt, da dies zu einer Abweichung des Nullpunkts führt.
- 6 Ziehen Sie die beiden Befestigungsschrauben 1 der Riemenspannrolle 3 nach der Einstellung wieder fest. Eine nicht richtig festgeschraubte Riemenspannrolle 3 kann sich aufgrund von Vibrationen lösen.

Antriebszahnriemen austauschen

- ① Fahren Sie die J3-Achse mit der Teaching Box in den mechanischen Endanschlag. Dazu muss die Bremse der J3-Achse gelöst werden.
- ② Fixieren Sie die Riemenspannrollen ④ und ⑤ beim Austausch des Antriebszahnriemens. Sollte sich die Position der Riemenspannrollen verändern, so muss die Nullstellung der Achse neu eingestellt werden.
- ③ Markieren Sie den Antriebszahnriemen ② und die Zahnriemenscheiben ④ und ⑤, damit die Position wiedergefunden wird.
- (4) Lösen Sie die Befestigungsschrauben (1) der Riemenspannrolle (3).
- (5) Übernehmen Sie die Markierungen von dem alten auf den neuen Antriebszahnriemen.
- 6 Tauschen Sie den alten Zahnriemen gegen den neuen aus.
- ⑦ Stellen Sie die Zahnriemenspannung wie oben beschrieben ein.
- ⑧ Überprüfen Sie, ob sich eine Änderung der Grundposition ergeben hat.
- Korrigieren Sie gegebenenfalls die Grundposition der J3-Achse durch eine erneute Einstel-lung des Bezugspunktes (Nullpunkt).

5.3.6 Inspektion, Einstellung und Ersetzen des Antriebszahnriemens für die J4-Achse

Abb. 5-7: Antriebszahnriemen für die Unterarmdrehachse

Inspektion des Antriebszahnriemens

- ① Stellen Sie sicher, dass die Versorgungsspannung des Steuergerätes ausgeschaltet ist.
- ② Entfernen Sie die Ellbogenabdeckung (links und rechts) (siehe Abb. 5-3 oder Abb. 5-4).
- ③ Überprüfen Sie den Antriebszahnriemen auf Beschädigungen und Verschleiß (Abs. 5.3.3).
- ④ Drücken Sie in der Mitte leicht auf den Zahnriemen (ca. 0,4 N). Der Zahnriemen muss sich ca. 1,2 mm hinunterdrücken lassen (siehe Abb. 5-9).

Einstellung der Zahnriemenspannung

- Führen Sie die im Abs. "Inspektion des Antriebszahnriemens" genannten Schritte (1) und (2) aus.
- ② Lösen Sie die beiden Motorbefestigungsschrauben 1. Achten Sie darauf, dass Sie die Schrauben nicht komplett herausdrehen.
- ③ Stellen Sie die Zahnriemenspannung mit Hilfe des Motors ④ entsprechend den Werten aus Tab. 5-6 ein.
- ④ Bewegen Sie den Motor ③ in Richtung "a", so spannt sich der Zahnriemen. Bewegen Sie den Motor ③ in Richtung "b", so entspannt sich der Zahnriemen.
- (5) Achten Sie beim Entspannen des Zahnriemens darauf, dass dieser nicht von den Zahnriemenscheiben 4 und 5 springt oder verspringt, da dies zu einer Abweichung des Nullpunkts führt.
- 6 Ziehen Sie die beiden Motorbefestigungsschrauben ① nach der Einstellung wieder fest. Ein nicht richtig festgeschraubter Motor ③ kann sich aufgrund von Vibrationen lösen.

Antriebszahnriemen austauschen

- ① Fahren Sie die J4-Achse mit der Teaching Box in den mechanischen Endanschlag. Nachdem die Servospannung ausgeschaltet ist, muss das Gelenk per Hand bewegt werden.
- ② Fixieren Sie die Zahnriemenscheiben ④ und ⑤ beim Austausch des Antriebszahnriemens. Sollte sich die Position der Zahnriemenscheiben verändern, so muss die Nullstellung der Achse neu eingestellt werden.
- ③ Markieren Sie den Antriebszahnriemen ② und die Zahnriemenscheiben ④ und ⑤, damit die Position wiedergefunden wird.
- (4) Lösen Sie die Motorbefestigungsschrauben (1).
- (5) Übernehmen Sie die Markierungen von dem alten auf den neuen Antriebszahnriemen.
- 6 Tauschen Sie den alten Zahnriemen gegen den neuen aus.
- ⑦ Stellen Sie die Zahnriemenspannung wie oben beschrieben ein.
- ⑧ Überprüfen Sie, ob sich eine Änderung der Grundposition ergeben hat.
- Korrigieren Sie gegebenenfalls die Grundposition der J4-Achse durch eine erneute Einstel-lung des Bezugspunktes (Nullpunkt).

5.3.7 Inspektion, Einstellung und Ersetzen des Antriebszahnriemens für die J5-Achse

Abb. 5-8: Antriebszahnriemen für die Handgelenkneigungsachse

Inspektion des Antriebszahnriemens

- ① Stellen Sie sicher, dass die Versorgungsspannung des Steuergerätes ausgeschaltet ist.
- ② Entfernen Sie die Armabdeckungen 2 (links und rechts) (siehe Abb. 5-3 oder Abb. 5-4).
- ③ Überprüfen Sie den Antriebszahnriemen auf Beschädigungen und Verschleiß (Abs. 5.3.3).
- ④ Drücken Sie in der Mitte leicht auf den Antriebszahnriemen (ca. 0,4 N). Der Zahnriemen muss sich ca. 1,4 mm hinunterdrücken lassen (siehe Abb. 5-9).

Einstellung der Zahnriemenspannung

- Führen Sie die im Abs. "Inspektion des Antriebszahnriemens" genannten Schritte (1) und (2) aus.
- ② Lösen Sie die beiden Motorbefestigungsschrauben 1. Achten Sie darauf, dass Sie die Schrauben nicht komplett herausdrehen.
- ③ Stellen Sie die Zahnriemenspannung mit Hilfe des Motors ③ entsprechend den Werten aus Tab. 5-6 ein.
- ④ Bewegen Sie den Motor ③ in Richtung "a", so spannt sich der Zahnriemen. Bewegen Sie den Motor ③ in Richtung "b", so entspannt sich der Zahnriemen.
- Achten Sie beim Entspannen des Zahnriemens darauf, dass dieser nicht von den Zahnriemenscheiben 4 und 5 springt oder verspringt, da dies zu einer Abweichung des Nullpunkts führt.
- 6 Ziehen Sie die beiden Motorbefestigungsschrauben ① nach der Einstellung wieder fest. Ein nicht richtig festgeschraubter Motor ③ kann sich aufgrund von Vibrationen lösen.

Antriebszahnriemen austauschen

- ① Fahren Sie die J5-Achse mit der Teaching Box in den mechanischen Endanschlag. Nachdem die Servospannung ausgeschaltet ist, muss das Gelenk per Hand bewegt werden.
- ② Fixieren Sie die Zahnriemenscheiben ④ und ⑤ beim Austausch des Antriebszahnriemens. Sollte sich die Position der Zahnriemenscheiben verändern, so muss die Nullstellung der Achse neu eingestellt werden.
- ③ Markieren Sie den Antriebszahnriemen ② und die Zahnriemenscheiben ④ und ⑤, damit die Position wiedergefunden wird.
- (4) Lösen Sie die Motorbefestigungsschrauben (1).
- 5 Übernehmen Sie die Markierungen von dem alten auf den neuen Antriebszahnriemen.
- 6 Tauschen Sie den alten Zahnriemen gegen den neuen aus.
- ⑦ Stellen Sie die Zahnriemenspannung wie oben beschrieben ein.
- ⑧ Überprüfen Sie, ob sich eine Änderung der Grundposition ergeben hat.
- Korrigieren Sie gegebenenfalls die Grundposition der J5-Achse durch eine erneute Einstel-lung des Bezugspunktes (Nullpunkt).

Hinweise zur Zahnriemenspannung

Ein Zahnriemen muss eine bestimmte Spannung haben, um eine gleichbleibende und dauerhafte Kraftübertragung zu gewährleisten. Bei zu schwacher Spannung vibriert die lose Riemenseite. Bei zu starker Spannung vibriert die gespannte Seite und erzeugt ein schrilles Geräusch.

Abb. 5-9 und Tab. 5-6 beschreiben das Prüfen des Zahnriemens. Die Einstellung der Zahnriemenspannung ist korrekt, wenn mit einer Kraft "f" eine Durchbiegung "d" der Spannweite "s" erreicht wird.

Abb. 5-9: Definition der Zahnriemenspannung

Gelenk	Zahnriementyp	Spannweite "s"	Durchbiegung "d"	Zahnriemenspannung "f"
J2	291-3GT-6	100	1,5	2
J3	315-3GT-6	102,5	1,6	2
J4	210-2GT-3	75	1,2	0,4
J5	230-2GT-3	85	1,4	0,4

Tab. 5-6: Zahnriemenspannung

5.3.8 Schmierung

Schmierstellen und Schmiermittelmenge

Die folgende Abbildung zeigt die Lage der einzelnen Schmierstellen. In Tab. 5-7 sind alle Angaben zu Menge, Typ und Ort des Schmiermitteleinsatzes zusammengestellt. Um die Schmierung durchzuführen, müssen Sie die Gehäuseabdeckungen (siehe Abs. 5.3.2) abnehmen.

Abb. 5-10: Übersicht der Schmierstellen

Nr.	Schmierpunkt	Anschlusstyp	Schmierung/Menge		Schmier- Intervall	Abdeckung entfernen
0	Mittelteil, Untersetzungsgetriebe	Nippel WC-610	Schmierfett SK-1A Liefermenge (10 g)	3 g	2000 h	Schulter- abdeckung
2	Schultergelenk, Untersetzungsgetriebe	Nippel WA-610	Schmierfett SK-1A Liefermenge (10 g)	3 g	2000 h	Arm- abdeckung 1
3	Ellgogengelenk, Untersetzungsgetriebe	Nippel WA-610	Schmierfett SK-1A Liefermenge (10 g)	3 g	2000 h	Arm- abdeckung 1
4	Unterarmdrehgelenk, Untersetzungsgetriebe	Nippel WA-610	Schmierfett SK-1A Liefermenge (4 g)	1 g	2000 h	Ellbogen- abdeckung
6	Handneigungsgelenk, Untersetzungsgetriebe	Nippel WA-610	Schmierfett SK-1A Liefermenge (4 g)	1 g	2000 h	Arm- abdeckung 2
6	Handdrehgelenk, Untersetzungsgetriebe	Nippel WA-610	Schmierfett SK-1A Liefermenge (4 g)	1 g	2000 h	

Tab. 5-7: Schmierungsplan

HINWEISE

Das Schmierintervall bezieht sich auf den Betrieb mit maximaler Geschwindigkeit. Bei mittlerer oder langsamer Arbeitsgeschwindigkeit verlängert sich das Schmierintervall entsprechend (Vorgabe 8 [h] \times 20 [Tage] \times 12 [Monate] = 2000 [h]).

Das Schmierintervall ist auch von den Betriebsbedingungen abhängig.

Die Nummern in Tab. 5-7 entsprechen den Schmierpunkten aus Abb. 5-10.

Vorgehensweise bei der Schmierung

- ① Fahren Sie den Roboterarm in die in Abb. 5-10 gezeigte Stellung.
- 2 Entfernen Sie die Gehäuseabdeckungen (siehe Abs. 5.3.2).
- ③ Entfernen Sie die Entlüftungsschrauben.
- ④ Pressen Sie das Schmierfett mit einer Schmierfettpumpe in die entsprechenden Schmierstellen (Schmierfett siehe Tab. 5-7).
- (5) Setzen Sie die Entlüftungsschrauben wieder ein.
- 6 Montieren Sie die Gehäuseabdeckungen.

5.3.9 Austausch der Pufferbatterie

Der Roboterarm verfügt über Pufferbatterien, um die Encoder-Positionsdaten auch im ausgeschalteten Zustand zu speichern. Ebenso befindet sich im Steuergerät eine Pufferbatterie, die zur Speicherung der Programme und Positionen dient.

Ist die Lebensdauer der Batterien abgelaufen, wird eine Fehlermeldung mit der Fehlernummer 7520 ausgelöst. Die Batterien sind dann schnellstmöglich zu ersetzen, um einen Verlust der Daten zu verhindern.

Die Batterien sind auf Lithiumbasis hergestellt (Ersatzteilbezeichnung: A6BAT und ER6). Der folgende Abschnitt beschreibt das Austauschen der Pufferbatterien.

Batterien im Roboterarm austauschen

In Abb. 5-11 wird der Austausch der Batterien gezeigt. Die Roboterarme besitzen 5 Batterien. Gehen Sie beim Austausch der Batterien wie folgt vor:

- ① Prüfen Sie die Kabelverbindung zwischen Roboterarm und Steuergerät.
- ② Schalten Sie das Steuergerät ein. Das Steuergerät liefert während des Batteriewechsels die Versorgungsspannung für die Encoder. Der Roboterarm muss mit dem eingeschalteten Steuergerät verbunden sein, damit die Positionsdaten nicht verloren gehen.
- (3) Mit dem Jog-Betrieb verfahren Sie die angegebenen Achsen wie folgt: $J2 = -20^{\circ}$, $J3 = 90^{\circ}$ und $J5 = 90^{\circ}$.
- ④ Betätigen Sie zur Sicherheit den NOT-HALT-Schalter.
- (5) Entfernen Sie die Schulterabdeckung A (siehe Abs. 5.3.2).
- 5 Entfernen Sie die Schrauben 1 und die Batteriefachabdeckung 2.
- 6 Entfernen Sie die Schrauben 3 und die Batteriehalterung 4.
- ⑦ Entnehmen Sie alle alten Batterien aus dem Batteriehalter und trennen die Steckanschlüsse.
- (8) Setzen Sie die neuen Batterien ein. Stecken Sie die Anschlussstecker wieder auf.

HINWEIS Tauschen Sie immer gleichzeitig alle Batterien im Roboterarm und im Steuergerät aus.

- Montieren Sie die Batteriehalterung.
- 1 Montieren Sie die Abdeckung des Batteriefachs.
- 1) Entsorgen Sie die Batterien sachgerecht.

ACHTUNG:

Wenn die Batterien im Roboterarm ausfallen und keine Versorgungsspannung anliegt, gehen die Encoder-Positionsdaten verloren. Das Steuergerät muss eingeschaltet und mit dem Roboterarm verbunden sein, damit die Encoder während eines Batterieaustauschs weiter mit Strom versorgt werden.

Abb. 5-11: Austausch der Batterien im Roboterarm

Pufferbatterie im Steuergerät austauschen

ACHTUNG:

Trennen Sie die Netzzuleitung vom Steuergerät und warten Sie mindestens 3 Minuten, bevor Sie die Gehäuseabdeckung abnehmen. Schalten Sie die Spannungsversorgung nicht ein, bevor Sie die Abdeckung wieder befestigt haben.

- ① Schalten Sie das Steuergerät für ca. 1 Minute ein.
- ② Schalten Sie den Netzschalter aus und trennen Sie die Netzzuleitung.
- ③ Warten Sie mindestens 3 Minuten, damit sich die Restspannungen abbauen können.
- ④ Lösen Sie die Befestigungsschraube des Gehäusedeckels und entfernen Sie die Abdeckung.

Abb. 5-12: Entfernen des Gehäusedeckels

(5) Lösen Sie die Steckverbindung und entnehmen Sie die Batterie.

Abb. 5-13: Batterie austauschen

6 Setzen Sie eine neue Batterie ein.

HINWEIS Tauschen Sie immer gleichzeitig alle Batterien im Steuergerät und im Roboterarm aus.

- ⑦ Verbinden Sie den Stecker der Batterie mit dem entsprechenden Anschluss. Halten Sie dabei die Kontaktseite nach unten.
- (8) Montieren Sie alle Abdeckungen mit den Befestigungsschrauben.
- (9) Setzen Sie den Batterie-Timer zurück (siehe nächste Seite).

HINWEIS Der gesamte Austauschvorgang darf maximal 15 Minuten dauern. Andernfalls kann es zu einem Datenverlust kommen.

ACHTUNG:

Wenn eine Batteriefehlermeldung (Fehlernummer: 7520) auftritt, ist eine einwandfreie Sicherung des Speicherinhalts nicht mehr gewährleistet. Sichern Sie in diesem Fall wichtige Programme und Positionsdaten mit einem Personalcomputer.

Batterie-Timer zurücksetzen

Setzen Sie den Batterie-Timer sofort nach dem Austauschen der Batterie zurück. Gehen Sie dabei wie folgt vor:

Nr.	Display-Darstellung	Tastenbetätigungen	Beschreibung
1	<menu> 1.TEACH 2.RUN 3.FILE 4.MONT 5.MAINT 6.SET</menu>	(+ C (J6) 5 STU	Das Menü "MAINTENANCE" wird ausgewählt.
2	<maint> 1.PARAM 2.INIT 3.BRAKE 4.ORIGIN 5.POWER</maint>	(J2) 4 MNO	Der Menüpunkt "INIT" wird ausgewählt.
3	<init> INIT (2) 1.PROGRAM 2.BATT</init>	$ \begin{bmatrix} -A \\ (J4) \\ 2 \\ GHJ \end{bmatrix} \downarrow \boxed{INP} \\ EXE $	Der Menüpunkt "BATT" wird ausgewählt.
4	<init> BATT. OK (1) 1:EXECUTE</init>	$ \begin{bmatrix} -B\\ (J5)\\ 1 DEF \end{bmatrix} \downarrow \begin{bmatrix} INP\\ EXE \end{bmatrix} $	Der Batterie-Timer wird zurückgesetzt.

Tab. 5-8: Batterie-Timer zurücksetzen
5.4 Austausch- und Ersatzteile

In der folgenden Tabelle sind die Austausch- und Verschleißteile des Roboterarms und des Steuergerätes aufgeführt. Diese Teile können als normale Lagerteile geführt werden. Um die Austausch- und Verschleißteile nachzukaufen, geben Sie bitte die Bezeichnung des entsprechenden Teils sowie die Seriennummer des Roboterarms und des Steuergerätes an.

Bitte setzen Sie sich mit unserem Vertrieb in Verbindung, um Informationen über weitere Ersatzteile zu erhalten.

5.4.1 Austausch und Verschleißmaterialien

Typenangaben

Bezeichnung	Тур	Bemerkung	Lebensdauer/ Wechselintervall
Batterie	A6BAT	5 Batterien im Roboterarm	1 Jahr (siehe HINWEIS)
	ER6 BKO-NC2157H01	1 Batterie im Steuergerät	
Sicherung	LM16		
	LM32		
	LM32	Sicherungen im Steuergerät	
	HM32	(RZ802A-Karte)	
Filter	FLM6	Filter an der Unterseite des Steuergerätes	
Schmierfett	SK-1A	Schmierung der Untersetzungsgetriebe und der Lager im Roboterarm	2000 h

Tab. 5-9: Austauschteile und Verschleißmaterialien

HINWEISE

Die Batterien besitzen eine Pufferzeit von 1 Jahr. Diese Angaben beziehen sich auf die Summe der Zeiträume, in denen der Roboter ausgeschaltet war. Wenn die Kapazität der Batterien zur Neige geht, löst der Roboter die Fehlernummer 7520 aus. Die Batterien müssen dann ausgetauscht werden.

Bleibt der Roboter über längere Zeit ausgeschaltet, verringern sich die Pufferzeiten der Batterien.

5.4.2 Übersicht der Ersatzteile für die Wartung

Nr.	Bezeichnung	Тур	Lage des Teils	Anzahl
1	Zahnriemen	291-3GT-6	J2-Achse	1
2		315-3GT-6	J3-Achse	1
3		210-2GT-3	J4-Achse (nur bei 6-achsigen Roboterarmen)	1
4		230-2GT-3	J5-Achse	1
5	Schmierfett	SK-1A	Alle Untersetzungsgetriebe	_
6	Lithium-Batterie	A6BAT	Batteriefach	5

Tab. 5-10: Übersicht der Wartungsteile für den Roboterarm

Nr.	Bezeichnung	Тур	Lage des Teils	Anzahl			
1	Lithium-Batterie	ER6 BKO-NC2157H01	Auf der CPU-Karte im Steuergerät	1			

Tab. 5-11: Übersicht der Wartungsteile im Steuergerät

6 Technische Daten

6.1 Roboterarm

Markmal/Funktion		Maßainhait	Daten						
merkinal/Fullktion		Mabelimen	RV-2AJ	RV-1A					
Montage			Boden- oder Deckenmontage möglich	Boden- oder Deckenmontage möglich					
Konstruktion			Vertikal-	Knickarm					
Freiheitsgrad			5	6					
Antriebssystem			AC-Servo (J1-, J2- u J5-Achse: 15 \ J4-, J6-Achse: 15	nd J3-Achse: 50 W, N mit Bremse, W ohne Bremse)					
Positionserkennung			Absolut-	Encoder					
Armlänge	Schulterversatz		(D					
	Oberarm		2	50					
	Unterarm	mm	10	60					
	Ellbogenversatz		0	90					
	Länge des Handgelenks		72						
Bewegungsbereich	Körper (J1)		300 (–150) bis +150)					
	Schulter (J2)		180 (-60 bis +120)						
	Ellbogen (J3)		230 (-110 bis +120)	95 (+60 bis +155)					
	Unterarmdrehung (J4)	Grad		320 (-160 bis +160)					
	Handgelenkneigung (J5)		180 (-90 bis +90)						
	Handgelenkdrehung (J6)		400 (-200 bis +200)						
Bewegungs-	Körper (J1)		18	30					
geschwindigkeit	Schulter (J2)		9	0					
	Ellbogen (J3)	Grad/a	1:	35					
	Unterarmdrehung (J4)	Giau/S		180					
	Handgelenkneigung (J5)		18	30					
	Handgelenkdrehung (J6)		2	10					
Resultierende Maxim	nalgeschwindigkeit	mm/s	2200	2100					
Hebekraft	Nennwert	ka	1,5	1					
	Maximalwert	ĸġ	2	1,5					
Wiederholgenauigkeit bei der Positionierung		mm	± 0	,02					
Umgebungstemperat	tur	°C	0 bis 40						
Gewicht		kg	17	19					
Nennmoment	Unterarmdrehung (J4)			1,44					
	Handgelenkneigung (J5)	Nm	2,16	1,44					
	Handgelenkdrehung (J6)		1,10	0,73					

Tab. 6-1: Technische Daten der Roboterarme (1)

Markmal/Funktion		Maßainhait	Daten						
Werkmai/Fullktion		wabenmen	RV-2AJ	RV-1A					
Nennträgheits-	Unterarmdrehung (J4)		_	$2,16 \times 10^{-2}$					
moment	Handgelenkneigung (J5)	kgm ²	3,24 × 10 ⁻²	$2,16 \times 10^{-2}$					
	Handgelenkdrehung (J6)		$8,43 \times 10^{-3}$	$5,62 \times 10^{-3}$					
Reichweitenradius (bis zum Drehpunkt	der J5-Achse)	mm	410	418					
Werkzeugverkabelu	ng		4 Eingangs-Signalleitungen (Anschluss im Han- bereich), 4 Ausgangs-Signalleitungen (Anschlus im Sockelbereich), Spannungsleitung für motort triebene Greifhand (Anschluss im Handbereich						
Pneumatikschlauch	für Werkzeug		\emptyset 4 × 4 (von der Standebene bis in den Handbereich						
Pneumatikversorgur	ngsdruck	N/cm ²	0,5 ± 10 %						
Schutzart			IP 30						

Tab. 6-1: Technische Daten der Roboterarme (2)

6.2 Steuergerät

ACHTUNG: Bei der Angabe der Leistungsaufnahme von 0,7 kVA ist der Einschaltstrom nicht berücksichtigt.

Merkmal/Funktion		Daten	Bemerkung						
Тур		CR1-571							
Anzahl der steuerba	aren Achsen	Maximal 6							
Prozessortyp		Haupt-CPU: 64 Bit RISC Servo-CPU: DSP							
Speicherkapazität	Programmierte Position und Anzahl der Programmschritte	2500 Positionen maximal 5000 Zeilen							
	Anzahl der Programme	88							
Programmiersprach	ie	MELFA-BASIC IV MOVEMASTER COMMAND							
Positioniermethode		Teaching Box							
Externe Ein-/Ausgänge	Allgemeine Ein-/Ausgänge	16 Eingänge und 16 Ausgänge	Das Robotersystem kann bis auf 240 Eingänge und 240						
	Spezielle Ein-/Ausgänge	Benutzerdefiniert	Ausgänge erweitert werden						
	Ein-/Ausgänge für Greifhand	Optional können bis zu 4 Handausgangssignale hinzugefügt werden							
	NOT-HALT	1							
	Tür-Schließkontakt	1							
Schnittstellen	RS232C	1	Schnittstelle für PC						
	RS422	1	Schnittstelle für Teaching Box						
	Handanschluss	1	Schnittstellenkarte für Greifhand						
	Erweiterungs- schnittstellen	3	Erweiterungsoption						
	Ein-/Ausgänge	1	Zur Erweiterung auf 240 Ein- und 240 Ausgänge						
Versorgungsspannung		1-phasig 90–132 V AC 50/60 Hz, 0,7 kVA 1-phasig 180–253 V AC 50/60 Hz, 0,7 kVA	Leistungsangabe ohne Berücksichtigung des Einschaltstroms						
Umgebungstemperatur		0 bis 40 °C							
Umgebungsluftfeuchtigkeit		45–85 % nicht kondensierend							
Erdung		Über separate Anschluss- klemme; Erdungswiderstand \leq 100 Ω							
Konstruktion		Bodenaufstellung							
Abmessungen (B ×	$H \times T$)	212 mm × 166 mm × 290 mm							
Gewicht		8 kg							

Tab. 6-2:	Technische Daten des Steuergerätes
-----------	------------------------------------

6.3 Umgebungsbedingungen für den Betrieb

Da die Umgebungsbedingungen stark auf die Gerätebetriebsdauer einwirken, sollten Sie das Robotersystem nicht unter den im Folgenden beschriebenen Bedingungen aufstellen:

Spannungsversorgung

Nicht einsetzen, wenn

- die Spannungsschwankungen größer als 1-phasig +10 % oder -10 % sind,
- kurzzeitige Spannungsausfälle länger als 20 ms dauern,
- die Netzversorgung nicht mindestens eine Leistung von 0,7 kVA liefern kann

HF-Störeinfluss

Nicht einsetzen, wenn

- Spannungsspitzen größer als 1000 V und länger als 1 µs auf der Netzversorgung sind,
- sich in der N\u00e4he gro\u00dfe Frequenzumrichter, Transformatoren, Magnetschalter oder Schwei\u00dfger\u00e4te befinden,
- sich Radios oder Ferseher in der Nähe befinden

• Temperatur/Luftfeuchtigkeit

Nicht einsetze, wenn

- die Umgebungstemperatur über 40 °C oder unter 0 °C liegt,
- die Luftfeuchtigkeit unter 45 % oder über 85 % liegt,
- der Roboter direkter Sonnenstrahlung ausgesetzt wird,
- Kondensation auftreten kann

• Vibrationen

Nicht einsetzen, wenn

- der Roboter starken Vibrationen oder Stößen ausgesetzt ist,
- die maximale Belastung des Roboters bei einem Transport über 34 m/s² und im Betrieb über 5 m/s² liegt

Aufstellort

Nicht einsetzen, wenn

- starke elektrische oder magnetische Felder einwirken,
- eine sehr unebene Standfläche vorhanden ist

6.4 Schutzarten

Die Roboterarme verfügen über Schutzarten nach IEC-Spezifikation

Schutzartklasse: Roboterarm	IP 30				
Schutzartklasse: Steuergerät	IP 20 (Schutz gegen Berührung gefährlicher Teile)				
Schutzartklasse: Teaching Box	IP 65 (Schutz gegen Staub und Strahlwasser)				
Schutzartklasse: Leistungs-/Steuerkabel	IP 54F (spritzwassergeschützt)				

Tab. 6-3: Übersicht der Schutzarten des Robotersystems

HINWEISE

Die Roboterarme RV-2AJ und RV-1A sind ölnebelgeschützt.

Die IEC IP-Symbole kennzeichnen nur den Grad der zulässigen Verschmutzung durch Materialien und Flüssigkeiten. Sie implizieren nicht den kompletten Schutz gegen z. B. Öle oder Wasser.

6.5 **Grundlagen zu den technischen Daten**

Im folgenden Abschnitt werden die Grundlagen zu den technischen Daten und zum Garantiebetrieb beschrieben. Die Kenntnis dieser Information erleichtert die reibungslose Einführung des Robotersystems und verhindert das Auftreten von Problemen.

6.5.1 Definition

Wiederholgenauigkeit/Positioniergenauigkeit

Die Wiederholgenauigkeit wird durch die Verteilung der Ursprungspositionswerte im XYZ-Koordinatensystem bestimmt. Der Roboterarm fährt diesen Punkt unter den gleichen Umgebungsbedingungen wiederholt im Schnellgang an.

Der Ursprungspunkt liegt im Schnittpunkt zwischen der J6-Achse und der Fläche des Handflansches.

Die Positioniergenauigkeit entspricht der Distanz zwischen dem geteachten Punkt und dem Maximum der Positionsverteilung bei Wiederholung.

Bozoichpung	Nenr	wert	Nopphodingung
Bezeichnung	RV-2AJ	RV-1A	Neimbeungung
Wiederholgenauigkeit	X, Y, Z: ±0,02	X, Y, Z: ±0,02	Die Wiederholgenauigkeit (+/-) entspricht der Hälfte der Differenz zwischen Maximal- und Mi- nimalwert in der Verteilung der Positionswerte.

Tab. 6-4: Nennwerte für die Wiederholgenauigkeit

Abb. 6-1: Wiederholgenauigkeit

HINWEIS

Alle Angaben nur bei konstanten Werten für Last, Geschwindigkeit, Temperatur und Positionierung.

Nennbelastbarkeit

Die Nennbelastbarkeit des Roboters gilt nur für symmetrische Lasten. Sie sollten diesen Punkt bei der Auswahl des Roboterarms und des Greifwerkzeuges besonders berücksichtigen.

- Die Werte für Nennmoment und Nennträgheitsmoment des verwendeten Greifwerkzeugs sollten kleiner als die in Tab. 6-1 angegebenen Werte sein.
- In den nachfolgenden Abbildungen wird die Mittenverteilung der Gravitationskräfte für ein relativ leichtes Greifwerkzeug gezeigt. Dieses Verteilungsdiagramm sollte Ihnen als Grundlage für die Erstellung eigener Greifwerkzeuge dienen.
- Wenn die Gewichte der Last zwar gering, dagegen die auftretenden Kräfte relativ groß sind, sollten die Werte für Nennmoment und Nennträgheitsmoment des verwendeten Greifwerkzeugs kleiner als die in Tab. 6-1 angegebenen Werte sein.

ACHTUNG:

Der Roboter erzeugt in seltenen Fällen eine Überstromfehlermeldung durch Überlastung. In diesem Fall sollten Sie die Flankenzeit für das Beschleunigen/Abbremsen verlängern oder die Arbeitszykluszeit bzw. Arbeitshöhe verändern. Diese Einstellungen haben großen Einfluss auf die Belastbarkeit.

ACHTUNG:

Die in diesem Abschnitt beschriebenen Last- und Trägheitsmomente entsprechen den dynamischen Grenzen, die durch die Genauigkeitsangaben nicht im gesamten Bereich des Greifwerkzeugs gültig sind. Die Genauigkeit bezieht sich auf den Mittelpunkt des Handflansches. Werden lange oder nicht genügend steife Greifwerkzeuge eingesetzt, kann sich die Genauigkeit aufgrund von Vibrationen verringern.

Abb. 6-2: Lastbereich des Roboterarms RV-2AJ

Abb. 6-3: Lastbereiche des Roboterarms RV-1A

6.5.2 IP-Schutzarten

Roboterarm

Der Roboterarm entspricht der Schutzart IP 30 nach IEC-Spezifikation.

- Der Roboter ist gegen das Eindringen von Fremdkörpern mit einer Abmessung von > Ø2,5 mm geschützt.
- Ein Schutz gegen das Eindringen von Wasser oder Öl besteht nicht. Sie sollten geeignete Maßnahmen zum Schutz der Geräte gegen Wasser, Öl und Ölnebel treffen.
- Wird das Gerät in einer der folgenden Umgebungen eingesetzt, besteht kein Garantieanspruch mehr:
 - Es werden aggressive Medien (z. B. Säuren, Laugen usw.) eingesetzt.
 - Umgebungen, wo Späne kleiner 2,5 mm entstehen
 - Umgebungen mit starker Staub- oder Ölnebelbelastung
 - Umgebungen mit brennbaren oder agressiven Gasen

Steuergerät

Das Steuergerät entspricht der Schutzart IP 20 nach IEC-Spezifikation

- Das Steuergerät ist gegen das Eindringen von Fremdkörpern mit einer Abmessung von > Ø12 mm geschützt.
- Ein Schutz gegen das Eindringen von Wasser oder Öl besteht nicht. Sie sollten geeignete Maßnahmen zum Schutz der Geräte gegen Wasser, Öl und Ölnebel treffen.
- Wird das Gerät in einer der folgenden Umgebungen eingesetzt, besteht kein Garantieanspruch mehr.
 - Umgebung mit brennbaren oder aggressiven Gasen
 - Umgebung, wo Wasser oder Öl direkt auf das Steuergerät tropfen
 - Umgebung, wo Wasser oder Öl direkt auf das Steuergerät spritzen
 - Umgebung mit starker Staub- oder Ölnebelbelastung

Teaching Box

Die Teaching Box entspricht der Schutzart IP 65 nach IEC-Spezifikation. Diese umfasst nicht die Anschlüsse zur Verbindung mit dem Steuergerät.

HINWEIS Die IP 65 nach IEC definiert, dass das Eindringen von Staub mit einer Korngröße > Ø75 μm und Strahlwasser verhindert wird.

Leistungs- und Steuerkabelkabel

Die Leistungs- und Steuerkabel entsprechen der Schutzart IP 54F nach IEC-Spezifikation.

- Die Kabel sind gegen das Eindringen von Spritzwasser geschützt.
- Werden Die Kabel unter folgenden Bedingungen eingesetzt, besteht kein Garantieanspruch mehr.
 - Umgebung mit brennbaren oder aggressiven Gasen
 - Der Roboterarm wird zum Schneiden eingesetzt.
 - Es wird ein nicht verträgliches Schneidöl verwendet.
 - Umgebung, wo Späne kleiner als 0,5 mm, Wasser oder Öl direkt auf den Roboterarm fallen
 - Umgebung mit starker Staub- oder Ölnebelbelastung

6.6 Standardzubehör und Sonderzubehör

6.6.1 Roboterarm

In der folgenden Abbildung sind das Standard- und Sonderzubehör der Roboterarme RV-2AJ und RV-1A aufgeführt:

Abb. 6-4: Standardzubehör und Sonderzubehör der Roboterarme

6.6.2 Steuergerät

In der folgenden Abbildung sind das Standard- und Sonderzubehör des Steuergerätes CR1 aufgeführt:

Abb. 6-5: Standardzubehör und Sonderzubehör des Steuergerätes

Index

Α

Abmessungen
Roboterarm · · · · · · · · · · · · · · · · · · 4-2
Steuergerät · · · · · · · · · · · · · · · · · 4-8
Teaching Box · · · · · · · · · · · · · · · 4-45
Anschlusskabel
externe Ein-/Ausgangsmodule · · · · · · 4-57
für Handsensorsignale · · · · · · · · · · · 4-40
für Handsteuersignale · · · · · · · · · · 4-39
Personalcomputer · · · · · · · · · · 2-33,4-58
Antriebszahnriemen
austauschen (J2-Achse) · · · · · · · · · · 5-10
austauschen (J3-Achse) · · · · · · · · · · 5-12
austauschen (J4-Achse) · · · · · · · · · 5-14
austauschen (J5-Achse) · · · · · · · · · · 5-16
Wartung · · · · · · · · · · · · · · · · · · ·
Arbeitsbereich
Roboterarme · · · · · · · · · · · · · · · · 4-4
Austauschteile · · · · · · · · · · · · · · · · · 5-25

В								
Batterien								
Batterie-Timer zurücksetzen.	•	•						5-24
im Roboterarm austauschen.	•	•	•	•	•	•	•	5-20
im Steuergerät austauschen.		•	•			•		5-22
Befehle								
MELFA-BASIC IV · · · · ·		•	•			•		4-61
MOVEMASTER COMMAND		•	•			•		4-64
Bewegungsbereich								
Roboterarme · · · · · · ·	•	•	•	•	•	•	•	• 4-4

С

CC-Link-Schnittstellenkarte															
Installation \cdot \cdot		•	•	•	•	•	•	•	•	•	•	•	•	•	2-31

D

Druckluftleitungen												
Standardausführung ·	•	•	•	•	•	•	•	•	•	•	•	2-21

G

Gehäuseabdeckungen
Befestigungszubehör · · · · · · · · · · · · 5-7
entfernen · · · · · · · · · · · · · · · · · ·
Greifhand
Schlauchführung · · · · · · · · · · · · · · · 2-20
Greifhandsatz
Installation (4A-HM01) · · · · · · · · · · · 2-14
Installation (4A-HP01E) · · · · · · · · · · 2-15
motorbetrieben · · · · · · · · · · · · · · · · 4-31
pneumatisch betrieben · · · · · · · · · · 4-33
Grundausstattung $\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots 1-4$
Grundposition
Aufzeichnung · · · · · · · · · · · · · · · · · · 3-24
benutzerdefiniert · · · · · · · · · · · · · · · · · · ·
Siehe Einstellmethoden (Übersicht)
Einstellung über Dateneingabe · · · · · · 3-4
Einstellung über Endanschläge · · · · · · 3-8

Н

Handflanschadapter.												4-35
Handsensorkabel · ·			•									4-40
Handsteuerkabel \cdot \cdot	•	•	•	•	•	•	•	•	•	•	•	4-39

L

Inspektion
Antriebszahnriemen (J2-Achse) · · · · · 5-9
Antriebszahnriemen (J3-Achse) · · · · · 5-11
Antriebszahnriemen (J4-Achse) · · · · · 5-13
Antriebszahnriemen (J5-Achse) · · · · · 5-15
Inspektionsintervall · · · · · · · · · · · · · 5-1
Periodische Inspektionen · · · · · · · · · · 5-2
Tägliche Inspektionen · · · · · · · · · · · · 5-2
Installation
2A-RZ364/2A-RZ375 · · · · · · · · · · · 2-24
Magnetventilsatz · · · · · · · · · · · · · · · 2-18
Motorbetriebener Greifhandsatz · · · · · 2-14
Parallele Ein-/Ausgangsschnittstelle · · · 2-28
Teaching Box · · · · · · · · · · · · · · · 2-26
zusätzliche Schnittstellenkarten · · · · · 2-31
IP-Schutzarten · · · · · · · · · · · · · · · · · 6-9

Κ

Koordinatensysteme	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4-1

				L						
Leistungskabel	•		•		•					4-43

Μ

Magnetventilsatz					
Installation \cdot · · · · · · · · · · · · ·	•	•	•	•	2-18
Technische Daten · · · · · · · ·	•	•	•	•	4-36
MELFA-BASIC-IV-Befehle · · · · ·		•	•	•	4-61
MOVEMASTER-COMMAND-Befehle-			•	•	4-64

Ν

Nennbelastbarkeit · · · · · · · · · · · · · · · · · · 6-7
Netzanschluss · · · · · · · · · · · · · · · · · 2-11
NOT-HALT-Schalter
Anschluss · · · · · · · · · · · · · · · · · 2-13

0

Optionen										
Beschreibung			•	•		•		•	Z	1-30
Übersicht · ·	•									1-2

Ρ

Pa	rallele Ein-/Ausgang	SS	cł	n	itts	ste	elle	е	•		•	•	•	4-20
	Anschlussbelegung	•	•		•	•		•	•	•		•	•	4-51
	Installation \cdot \cdot \cdot \cdot		•	•	•	•		•	•		•	•	•	2-28
	Technische Daten \cdot	•	•	•	•	•	•	•	•	•	•	•	•	4-49
Pa	rameter													
	für Ein-/Ausgänge ·	•	•	•	•	•	•	•	•	•	•	•	•	4-11
	Übersicht	•	•	•	•	•	•	•	•	•	•	•	•	4-68
Pe	rsonalcomputer													
	RS232C-Schnittstell	е	•	•	•	•	•	•	•	•	•	•	•	4-25
Po	sitioniergenauigkeit	•	•	•	•	•		•	•	•	•	•	•	• 6-6

R

Roboter	
Grundausstattung · · · · · · · · · · · · · · 1-	4
Roboterarm	
aufstellen · · · · · · · · · · · · · · · · · · ·	5
auspacken · · · · · · · · · · · · · · · · · · ·	1
Außenabmessungen · · · · · · · · · · · 4-	2
Erdung · · · · · · · · · · · · · · · · · · ·	7
Komponenten des 5-Achsers · · · · · · · 1-	6
Komponenten des 6-Achsers · · · · · · · 1-	7
Konstruktion · · · · · · · · · · · · · · · · · · 5-	4
Koordinatensysteme · · · · · · · · · · · · 4-	1
Lage der Servomotoren · · · · · · · · · · · · 1-	8
Technische Daten · · · · · · · · · · · · · · · · · 6-	1
Transport · · · · · · · · · · · · · · · · · · ·	3
verpacken · · · · · · · · · · · · · · · · · · ·	8
Robotersystem	
Erdung · · · · · · · · · · · · · · · · · · ·	6

5
Schlauchführung · · · · · · · · · · · · · · · · · 2-20
Schmierung
Schmiermittelmenge · · · · · · · · · · · · 5-18
Schmierstellen · · · · · · · · · · · · · · · · 5-18
Schmierungsplan · · · · · · · · · · · · · · 5-19
Vorgehensweise · · · · · · · · · · · · · · · 5-19
Schnittstellen für Zusatzachsen
Installation · · · · · · · · · · · · · · · · · · 2-31
Schutzarten
Übersicht · · · · · · · · · · · · · · · · · · ·
Selbstdiagnosefunktion · · · · · · · · · · · · 4-59
Serielle Schnittstellenkarte
Installation · · · · · · · · · · · · · · · · · · 2-31
Signallampe
Anschluss
$Funktion \cdot \cdot$
Spiralschlauch · · · · · · · · · · · · · · · · · 4-42
Steuergerät · · · · · · · · · · · · · · · · · · ·
aufstellen · · · · · · · · · · · · · · · · · · ·
auspacken · · · · · · · · · · · · · · · · · · 2-2
Bedien- und Signalelemente · · · · · · · 1-9
Gehäuseabmessungen · · · · · · · · · · 4-8
Technische Daten · · · · · · · · · · · · · · · 6-3
Transport · · · · · · · · · · · · · · · · · · 2-9
Steuerkabel · · · · · · · · · · · · · · · · · · ·
Steuermodul
Greifhand · · · · · · · · · · · · · · · · · 4-48
Systemkonfiguration · · · · · · · · · · · · · · 1-5
Systemübersicht · · · · · · · · · · · · · · · · · 1-1

Т

Teaching Box
Anschluss • • • • • • • • • • • • • • • • 2-26
Außenabmessungen · · · · · · · · · · · 4-45
Bedienelemente · · · · · · · · · · · · · · · · · 1-12
Technische Daten · · · · · · · · · · · · · 4-44
Technische Daten
Grundlagen · · · · · · · · · · · · · · · · · · ·
Roboterarm · · · · · · · · · · · · · · · · · · ·
Steuergerät · · · · · · · · · · · · · · · · · · ·
Totmannschalter · · · · · · · · · · · · · · 4-44
Tür-Schließkontakt
Anschluss • • • • • • • • • • • • • • • • 2-13
$Funktion \cdots + 4-9$

U

Umgebungsbedingungen · · · · · · · · · · · · · 6-4

V

Verbindungskabel														
Anschluss · · · ·	•	•	•	•	•	•	•	•	•	•	•	•	•	2-10
Technische Daten	•	•	•	•	•	•	•	•	•	•	•	•	•	4-43
Verschleißteile · · ·	•		•	•	•	•	•	•	•	•	•	•	•	5-25

W

Nartung · · · · · · · · · · · · · · · · · · ·	
der Zahnriemen · · · · · · · · · · · · · · · · 5-8	5
Ersatzteile · · · · · · · · · · · · · · · · · · 5-26	;
Wartungsplan · · · · · · · · · · · · · · · · · · 5-1	
Verkzeugbestückung · · · · · · · · · · · · · 2-14	ŀ
Niederholgenauigkeit · · · · · · · · · · · · · · · 6-6	5

Ζ

Zahnriemenspannung	
für J2-Achse einstellen · · · · · · · · · · · 5	-9
für J3-Achse einstellen • • • • • • • • • 5-1	1
für J4-Achse einstellen • • • • • • • • • 5-1	3
für J5-Achse einstellen • • • • • • • • • • 5-1	5
Hinweis · · · · · · · · · · · · · · · · · · ·	7
Zubehör	
Roboterarm · · · · · · · · · · · · · · · · · · ·	1
Steuergerät · · · · · · · · · · · · · · · · · · 6-1	2
Übersicht	30

	HEADO	UARTE	۱S	
MITSUBI EUROPE German Gothaer D-40880 Telefon: Telefax: E-Mail: m	SHI ELEC B.V. Branch Straße 8) Rating (02102) (02102) negfama	TRIC en 486-0 486-1120 il@meg.r	EUROF) mee.com	A
MITSUBI EUROPE French B 25, Boule F-92741 Telefon: Telefax: E-Mail: fa	SHI ELEC B.V. ranch evard de Nanter +33 1 55 +33 1 55 ctory.auto	TRIC s Bouvet re Cedex 5 68 55 68 5 68 56 85 5 68 56 85 5 68 56 85	FRANKREIG	n
MITSUBI EUROPE Irish Bran Westgate IRL-Dub Telefon: Telefax: E-Mail: sa	SHI ELEC B.V. 1ch e Busine lin 24 +353 (0) +353 (0) ales.info	TRIC ss Park, E 1 / 419 8 1 / 419 8 @meir.m	IRLAN Sallymour 38 00 38 90 ee.com	ID nt
MITSUBI EUROPE Italian Br Via Parao I-20041 Telefon: Telefax: E-Mail: fa	SHI ELEC B.V anch celso 12 Agrate +39 (0)3 +39 (0)3 actory.aut	Brianza 9 / 60 53 9 / 60 53 omation@	ITALII (MI) 1 312 Pit.mee.cor	n
MITSUBI EUROPE Spanish Carretera E-08190 (Barcelo Telefon: Telefax: E-Mail: ir	SHI ELEC B.V. Branch de Rub Sant Cu 9 +34 9 3 +34 9 3 adustrial	TRIC í 76-80 Jgat del / 565 313 / 589 294 @sp.mee	SPANIE Vallés 11 18 2.com	EN .
MITSUBI EUROPE UK Brand Traveller GB-Hatf Telefon: Telefax: E-Mail: a	SHI ELEC B.V. :h s Lane ield Her +44 (0)1 +44 (0)1 utomatio	TRIC ts. AL10 707 2761 707 2786 on@meu	l 8 XB 100 595 k.mee.cor	JK
MITSUBI CORPOR Office Tc 8-12,1 ch Tokyo 1 Telefon: Telefax:	SHI ELEC ATION wer "Z" ome, Ha 04-6212 +81 3 62 +81 3 62	TRIC 14 F arumi Ch 2 21 6060 221 6075	JAPA uo-Ku	N
MITSUBI AUTOM 500 Corp Vernon Telefon: Telefax:	SHI ELEC ATION oorate W Hills, IL +1 847 / +1 847 /	TRIC foods Par 60061 478 21 0 478 22 8	U kway 0 3	5A

EUROPÄISCHE VERTRETUNGEN etronics b.v. BELGIEN ontrol Systems ontbeeklaan 43 E-1731 Asse-Zellik elefon: +32 (0)2 / 4 67 17 51 elefax: +32 (0)2 / 4 67 17 45 Mail: infoautomation@getronics.com DÄNEMARK uis poulsen dustri & automation eminivej 32 K-2670 Greve elefon: +45 (0) 70 / 10 15 35 elefax: +45 (0) 43 / 95 95 91 Mail: Ipia@lpmail.com FINNLAND eiier Electronics OY nsatie 6a -01740 Vantaa elefon: +358 (0)9 / 886 77 500 elefax: +358 (0)9 / 886 77 555 Mail: info@beijer.fi ouvalias GRIECHENLAND dustrial Robots 5, El. Venizelou Ave. I**R-17671 Kallithea** elefon: +302 (0)10 / 958 92 43 elefax: +302 (0)10 / 953 65 14 Mail: robots@acci.gr IEA CR d.o.o. KROATIEN Invinje 63 I**R-10000 Zagreb** elefon: +385 (0)1 / 36 67 140 elefax: +385 (0)1 / 36 67 140 Mail: etronics NIEDERLANDE dustrial Automation B.V. onauweg 2 B L-1043 AJ Amsterdam elefon: +31 (0)20 / 587 6700 elefax: +31 (0)20 / 587 6839 Mail: info.gia@getronics.com eiier Electronics AS NORWEGEN eglverksveien 1 O-3002 Drammen elefon: +47 (0)32 / 24 30 00 elefax: +47 (0)32 / 84 85 77 Mail: info@beijer.no ÖSTERREICH FVA liener Straße 89 T-2500 Baden elefon: +43 (0)2252 / 85 55 20 elefax: +43 (0)2252 / 488 60 Mail: office@geva.at

MPL Technology Sp. z o.o. POLEN ul. Sliczna 36 PL-31-444 Kraków Telefon: +48 (0)12 / 632 28 85 Telefax: +48 (0)12 / 632 47 82 E-Mail: krakow@mpl.pl **Beijer Electronics AB** SCHWEDEN Box 426 S-20124 Malmö Telefon: +46 (0)40 / 35 86 00 Telefax: +46 (0)40 / 35 86 02 E-Mail: info@beijer.se ECONOTEC AG SCHWF17 Postfach 282 CH-8309 Nürensdorf Telefon: +41 (0)1 / 838 48 11 Telefax: +41 (0)1 / 838 48 12 E-Mail: info@econotec.ch ACP Autocomp a.s. **SLOWAKEI** Chalupkova 7 SK-81109 Bratislava Telefon: +421 (0)2 5292 2254 Telefax: +421 (0)2 5292 2248 E-Mail: info@acp-autocomp.sk INEA d.o.o. SLOWENIEN Stegne 11 SI-1000 Ljubljana Telefon: +386 (0)1 513 8100 Telefax: +386 (0)1 513 8170 E-Mail: inea@inea.si AutoCont. TSCHECHISCHE REPUBLIK Control Systems s.r.o Nemocnicni 12 ICOS CZ-70200 Ostrava 2 Telefon: +420 59 / 6152 111 Telefax: +420 59 / 6152 562 E-Mail: consys@autocont.cz **TSCHECHISCHE REPUBLIK** Kocks Ostrava s.r.o. Ul. Jezdiste 808 **CZ-72000 Ostrava Hrabova** Telefon: +420 596 / 735 095 Telefax: +420 596 / 782 707 E-Mail: -GTS TÜRKEI Darülaceze Cad. No. 43A KAT: 2 **TR-80270 Okmeydani-Istanbul** Telefon: +90 (0)212 / 320 1640 Telefax: +90 (0)212 / 320 1649 E-Mail: gts@turk.net Axicont Automatika Kft. Reitter F. U. 132 **HU-1131 Budapest** UNGARN Telefon: +36 (0)1 / 412-0882 Telefax: +36 (0)1 / 412-0883 E-Mail: office@axicont.hu Meltrade Automatika Kft. UNGARN 55, Harmat St. HU-1105 Budapest Telefon: +36 (0)1 / 260-5602 Telefax: +36 (0)1 / 260-5602

E-Mail: office@meltrade.hu

EUROPÄISCHE VERTRETUNGEN

KUNDEN-TECHNOLOGIE-CENTER DEUTSCHLAND MITSUBISHI ELECTRIC EUROPE B.V. Revierstraße 5

D-44379 Dortmund Telefon: (0231) 96 70 41-0 Telefax: (0231) 96 70 41-41 MITSUBISHI ELECTRIC EUROPE B.V. Kurze Straße 40 D-70794 Filderstadt Telefon: (0711) 77 05 98 0 Telefax: (0711) 77 05 98 79 MITSUBISHI ELECTRIC EUROPE B.V. Am Söldnermoos 8 D-85399 Hallbergmoos Telefon: (0811) 99 87 40

Telefon: (0811) 99 87 40 Telefax: (0811) 99 87 410

VERTRETUNG EURASIEN

RUSSLAND **FI FKTROSTYLF** ul. Garschina 11 RU-140070 Moscow Oblast Telefon: +7 095 557 9756 Telefax: +7 095 746 8880 E-Mail: mjuly@elektrostyle.ru ELEKTROSTYLE RUSSI AND Krasnij Prospekt 220-1,Office 312 RU-630049 Novosibirsk Telefon: +7 3832 / 10 66 18 Telefax: +7 3832 / 10 66 26 E-Mail: elo@elektrostyle.ru RUSSLAND Ryazanskij Prospekt, 8A, Office 100 RÚ-109428 Moscow Telefon: +7 095 232 0207 Telefax: +7 095 232 0327 E-Mail: mail@icos.ru

VERTRETUNG MITTLERER OSTEN

Ilan & Gavish Ltd ISRAEL Automation Service 24 Shenkar St., Kiryat Arie IL-49001 Petach-Tiqva Telefon: +972 (0 3 / 922 18 24 Telefax: +972 (0 3 / 924 07 61 E-Mail: iandg@internet-zahav.net

VERTRETUNG AFRIKA

CBI Ltd SÜDAFRIKA Private Bag 2016 **ZA-1600 Isando** Telefon: +27 (0 11 / 928 2000 Telefax: +27 (0 11 / 392 2354 E-Mail: cbi@cbi.co.za

